SGM41611 I²C Controlled High Voltage 4:1 14A Switched-Capacitor Charger #### **GENERAL DESCRIPTION** The SGM41611 is an efficient 14A switched-capacitor battery charging device with I²C control that can be configured to 6 different operation modes: forward 4:1/2:1/1:1 step-down charging modes and reverse 1:4/1:2/1:1 step-up discharging modes. It can charge single-cell Li-lon or Li-polymer battery in a wide 3.4V to 21V input voltage range (VBUS) from smart wall adapters or wireless charger. The switched-capacitor architecture is optimized for 50% duty cycle to cut the input current to one-quarter of the battery current and reduce the wiring drops, losses and temperature rise in the application. A two-channel switched-capacitor topology is used to reduce the required input capacitors and minimize the output ripple. It supports dual input configuration through integrated MUX control and driver for external OVPFETs. It also allows single input with no external OVPFET or single OVPFET. The SGM41611 is available in a Green WLCSP- $4.88 \times 3.6-108B$ package. #### **APPLICATIONS** Smart Phone, Tablet PC #### **FEATURES** - 6 Different Operation Modes - ◆ Forward 4:1/2:1/1:1 Step-down Charging Modes - Reverse 1:4/1:2/1:1 Step-up Discharging Modes - Efficiency Optimized Switched-Capacitor Architecture - Up to 14A Output Current - 3.4V to 21V Input Voltage Range - ◆ 400kHz to 1.5MHz Switching Frequency Setting - Above 96.8% Forward 4:1 Step-down Mode Efficiency (when V_{BAT} = 5V, I_{BAT} = 8A, f_{SW} = 400kHz) - Comprehensive Integrated Protection Feature - External VUSB/VWPC OVP Control - Input Over-Voltage Protection (VBUS_OVP) - Input Under-Voltage Protection (VBUS_UVP) - Input Over-Current Protection (IBUS_OCP) - Input Under-Current Protection (IBUS_UCP) - ◆ Input Reverse-Current Protection (IBUS RCP) - Output Over-Voltage Protection (VOUT_OVP) - Battery Over-Voltage Protection (VBAT_OVP) - IBAT Over-Current Protection (IBAT_OCP) - C_{FLY} Diagnosis (CFLY_DIAG) - Switch Peak Over-Current Protection (PEAK_OCP) - Die Over-Temperature Protection (TDIE_OTP) - 9-Channel 12-Bit (Effective) ADC Converter - VUSB, VWPC, VBUS, IBUS, VOUT, VBAT1, VBAT2, IBAT, TDIE for Monitoring #### TYPICAL APPLICATION **Figure 1. Typical Application Circuit** #### PACKAGE/ORDERING INFORMATION | MODEL | PACKAGE
DESCRIPTION | SPECIFIED
TEMPERATURE
RANGE | ORDERING
NUMBER | PACKAGE
MARKING | PACKING
OPTION | |----------|------------------------|-----------------------------------|--------------------|-----------------------|---------------------| | SGM41611 | WLCSP-4.88×3.6-108B | -40°C to +85°C | SGM41611YG/TR | 0FY
XXXXX
XX#XX | Tape and Reel, 1500 | #### **MARKING INFORMATION** NOTE: XXXXX = Date Code, Trace Code and Vendor Code. XX#XX = Coordinate Information and Wafer ID Number. Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly. ### I²C Controlled High Voltage 4:1 14A Switched-Capacitor Charger #### **ABSOLUTE MAXIMUM RATINGS** | VUSB, VWPC (Converter Not Switching) | 0.3V to 35V | |--|---------------------| | USBGATE, WPCGATE | 0.3V to 33V | | USBGATE to USBSUB, WPCGATE to WPC | SUB | | | 0.3V to 12V | | USBGATE/WPCGATE to VBUS | 27V to 12V | | USBSUB, WPCSUB, VBUS, PMID (Convert | er Not Switching) | | | 0.3V to 27V | | BST1A to CT3A, BST2A to CT1A, BST1B to | CT3B, BST2B to | | CT1B, CDRVH to VOUT | 0.3V to 6V | | PMID to VBUS | 0.3V to 6V | | PMID to CT3A/CT3B | 0.3V to 24V | | CT3A to CT2A, CT3B to CT2B | 0.3V to 18V | | CT2A to CT1A, CT2B to CT1B | 0.3V to 12V | | CT1A to VOUT, CT1B to VOUT | 0.3V to 6V | | VOUT, CB1A, CB1B, CB2A, CB2B | 0.3V to 6V | | SCL, SDA, nINT, nLPM, CDRVL_ADS, REG | SN, BATP1, | | BATP2, BATN1, BATN2, SRP, SRN, DP, DN | <i>M</i> 0.3∨ to 6∨ | | SRP to SRN | 0.5V to 0.5V | | Package Thermal Resistance | | | WLCSP-4.88×3.6-108B, θ _{JA} | 20.7°C/W | | WLCSP-4.88×3.6-108B, θ _{JB} | 1.9°C/W | | WLCSP-4.88×3.6-108B, θ _{JC} | 6.3°C/W | | Junction Temperature | +150°C | | Storage Temperature Range | -65°C to +150°C | | Lead Temperature (Soldering, 10s) | +260°C | | ESD Susceptibility (1)(2) | | | HBM | ±3000V | | CDM | ±1000V | | | | #### NOTES: - 1. For human body model (HBM), all pins comply with ANSI/ESDA/JEDEC JS-001 specifications. - 2. For charged device model (CDM), all pins comply with ANSI/ESDA/JEDEC JS-002 specifications. #### **RECOMMENDED OPERATING CONDITIONS** | VUSB, VWPC | 3.4V to 21V | |----------------------------|----------------| | VBUS (4:1 Mode) | 12V to 21V | | VBUS (2:1 Mode) | 6V to 11V | | VBUS (Forward 1:1 Mode) | 3.4V to 5.5V | | VOUT, BATP1, BATP2 | 3V to 5.5V | | (SRP - SRN) | 0.05V to 0.05V | | Junction Temperature Range | 40°C to +125°C | #### **OVERSTRESS CAUTION** Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied. #### **ESD SENSITIVITY CAUTION** This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications. #### **DISCLAIMER** SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice. #### **PIN CONFIGURATION** WLCSP-4.88×3.6-108B ### **PIN DESCRIPTION** | PIN | NAME | TYPE (1) | FUNCTION | |---|-----------|----------|---| | A1, A2, A3, A10,
A11, A12 | VBUS | Р | Device Power Input Pins. Use two 1µF or larger ceramic capacitors between VBUS and PGND pins close to the device. | | A4 | USBSUB | Al | External Back-to-Back N-MOSFET Common Source Input Pin. Leave it floating if USB charging function is not used. | | A5 | VUSB | Al | USB Charging DC Voltage Sense Input Pin. Connect it to the drain of the external N-MOSFET, or leave it floating if USBGATE control function is not used. | | A6 | BATN1 | Al | Battery1 Voltage Sensing Negative Input. Connect a 100Ω resistor between BATN1 and negative terminal of the battery pack, or connect it to ground if V_{BAT1} sensing is not used. | | A7 | BATN2 | Al | Battery2 Voltage Sensing Negative Input. Connect a 100Ω resistor between BATN2 and negative terminal of the battery pack, or connect it to ground if V_{BAT2} sensing is not used. | | A8 | VWPC | Al | Wireless Charging DC Voltage Sense Input Pin. Connect it to the drain of the external N-MOSFET, or leave it floating if wireless charging function is not used. | | A9 | WPCSUB | Al | External Back-to-Back N-MOSFET Common Source Input Pin. Leave it floating if wireless charging function is not used. | | B1, B2, B3, B4,
B9, B10, B11, B12 | PMID | Р | Power Stage Supply Input Pins. Bypass them with at least two $4.7\mu F$ ceramic capacitor to PGND. | | B5 | USBGATE | АО | External Dual N-MOSFET Gate Control Pin. Connect it to the gate of the external back-to-back N-MOSFET in the USB charging path, or leave it floating if USBGATE control function is not used. | | В6 | BATP1 | Al | Battery1 Voltage Sensing Positive Input. Connect a 100Ω resistor between BATP1 and positive terminal of the battery pack, or connect it to ground if V_{BAT1} sensing is not used. | | В7 | BATP2 | Al | Battery2 Voltage Sensing Positive Input. Connect a 100Ω resistor between BATP2 and positive terminal of the battery pack, or connect it to ground if V_{BAT2} sensing is not used. | | В8 | WPCGATE | АО | External Dual N-MOSFET Gate Control Pin. Connect it to the gate of the external back-to-back N-MOSFET in the wireless charging path, or leave it floating if wireless charging function is not used. | | C1, C2, C3, C4,
D1, D2, D3, D4 | СТЗА | Р | Channel-A Flying Capacitor C_{F3A} Top Plate Pins. Connect two $22\mu F$ or larger parallel capacitors between CT3A and CB1A pins as close as possible to the device. | | C5 | REGN | AO | Internal 5V LDO Output. Connect a 4.7µF MLCC capacitor between this pin and AGND. | | C6 | SRN | Al | High-side or Low-side Battery Current Sensing Negative Input. Place a $1m\Omega$ or $2m\Omega$ (R _{SNS}) shunt resistor between SRP and SRN pins. Short SRP and SRN together if not used. | | C7 | SRP | Al | High-side or Low-side Battery Current Sensing Positive Input. Place a $1m\Omega$ or $2m\Omega$ (R_{SNS}) shunt resistor between SRP and SRN pins. Short SRP and SRN together if not used. | | C8 | AGND | Р | Analog Ground Pin (reference for low current signals). | | C9, C10, C11, C12,
D9, D10, D11, D12 | СТ3В | Р | Channel-B Flying Capacitor C_{F3B} Top Plate Pins. Connect two $22\mu F$ or larger parallel capacitors between CT3B and CB1B pins as close as possible to the device. | | D5 | BST1A | Р | Channel-A Bootstrap Pin. It is the BST pin to supply Q_{8A} gate driver. Use a $0.1\mu F$ or larger MLCC capacitor from this pin to CT3A pin. | | D6 | DP | AIO | USB Communication Interface Positive Line. Connect it to the USB D+ data line. | | D7 | DM | AIO | USB
Communication Interface Negative Line. Connect it to the USB D- data line. | | D8 | BST1B | Р | Channel-B Bootstrap Pin. It is the BST pin to supply Q_{BB} gate driver. Use a $0.1\mu F$ or larger MLCC capacitor from this pin to CT3B pin. | | E1, E2, E3, E4 | CT2A | Р | Channel-A Flying Capacitor C_{F2A} Top Plate Pins. Connect two $22\mu\text{F}$ or larger parallel capacitors between CT2A and CB2A pins as close as possible to the device. | | E5 | CDRVL_ADS | AIO | Charge Pump for Gate Drive. Connect a $0.22\mu F$ MLCC capacitor between CDRVH and CDRVL_ADS. During POR, this pin is also used to assign the I^2C address of the device. Pull CDRVL_ADS low by a $75k\Omega$ resistor to AGND to select address $0x67$. Pull CDRVL_ADS low by a $249k\Omega$ resistor to AGND or leave it floating to select address $0x68$. | | E6 | SCL | DI | I ² C Interface Clock Input Line. The device I ² C controller block is forced to reset when receiving 9 clock pulses on the SCL line. | | E7 | SDA | DIO | I ² C Interface Data Line. The SDA line is forced to release when the I ² C timeout fault occurs. | | E8 | nINT | DO | Open-Drain Interrupt Output Pin. Use a pull-up $10k\Omega$ to the logic high rail. The nINT pin is active low and sends a negative 256μ s pulse to inform the AP about a new charger status update or a fault. | | E9, E10, E11, E12 | СТ2В | Р | Channel-B Flying Capacitor C_{F2B} Top Plate Pins. Connect two $22\mu F$ or larger parallel capacitors between CT2B and CB2B pins as close as possible to the device. | # **PIN DESCRIPTION (continued)** | PIN | NAME | TYPE (1) | FUNCTION | |---|-------|----------|--| | F1, F2, F3, F4 | CT1A | Р | Channel-A Flying Capacitor C_{F1A} Top Plate Pins. Connect two $22\mu F$ or larger parallel capacitors between CT1A and CB1A pins as close as possible to the device. | | F5 | BST2A | Р | Channel-A Bootstrap Pin. It is the BST pin to supply Q_{6A} gate driver. Use a $0.1\mu F$ or larger MLCC capacitor from this pin to CT1A pin. | | F6 | CDRVH | AIO | Charge Pump for Gate Drive. Connect a 0.22µF MLCC capacitor between CDRVH and CDRVL_ADS. | | F7 | nLPM | AI | Low Power Mode Enable Input Pin with an Internal $1.3M\Omega$ Pull-Down Resistor. If battery only, the logic low enables the low power mode with low quiescent current, and the I^2C bus does not need to respond. When the VUSB or VWPC is inserted, the state of nLPM pin is ignored and the device exits low power mode. A rising edge on nLPM pin while keeping high for more than 10μ s triggers a hard reset of the device. Except for the specified bits, all other register bits are reset to their default values if a hard reset is triggered. | | F8 | BST2B | Р | Channel-B Bootstrap Pin. It is the BST pin to supply Q_{6B} gate driver. Use a $0.1\mu F$ or larger MLCC capacitor from this pin to CT1B pin. | | F9, F10, F11, F12 | CT1B | Р | Channel-B Flying Capacitor C_{F1B} Top Plate Pins. Connect two $22\mu\text{F}$ or larger parallel capacitors between CT1B and CB1B pins as close as possible to the device. | | G1, G2, G3, G4,
G5, G6, G7, G8,
G9, G10, G11, G12 | VOUT | Р | Output Pins. Connect it to the battery pack positive terminal. Two 10µF capacitors between VOUT and PGND pins are recommended. | | H1, H2, H3, H4 | CB1A | Р | Channel-A Flying Capacitor C_{F1A} and C_{F3A} Bottom Plate Pins. Connect two $22\mu F$ or larger parallel capacitors between CT1A and CB1A pins as close as possible to the device, and also connect two $22\mu F$ or larger parallel capacitors between CT3A and CB1A pins as close as possible to the device. | | H5, H6 | CB2A | Р | Channel-A Flying Capacitor C _{F2A} Bottom Plate Pins. Connect two 22µF or larger parallel capacitors between CT2A and CB2A pins as close as possible to the device. | | H7, H8 | CB2B | Р | Channel-B Flying Capacitor C _{F2B} Bottom Plate Pins. Connect two 22µF or larger parallel capacitors between CT2B and CB2B pins as close as possible to the device. | | H9, H10, H11, H12 | CB1B | Р | Channel-B Flying Capacitor C_{F1B} and C_{F3B} Bottom Plate Pins. Connect two $22\mu F$ or larger parallel capacitors between CT1B and CB1B pins as close as possible to the device, and also connect two $22\mu F$ or larger parallel capacitors between CT3B and CB1B pins as close as possible to the device. | | J1, J2, J3, J4,
J5, J6, J7, J8,
J9, J10, J11, J12 | PGND | Р | Power Ground Pin. | #### NOTE: 1. P = power, AI = analog input, AO = analog output, AIO = analog input/output, DI = digital input, DIO = digital input/output. ### **ELECTRICAL CHARACTERISTICS** | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | |---|-----------------------------|---|------|------|------|----------| | Supply Currents | | | | | | | | VUSB Quiescent Current | I _{Q VUSB} | ADC disabled, SCC disabled, Q_{USB} used with driver disabled (USBGATE_EN bit = 0), $V_{USB_OVP_R} = 23V$ (VUSB_OVP[2:0] bits = 111), $V_{VUSB} = 21V$, $V_{WPC} = 0V$, $V_{VBUS} = 0V$, $V_{VOUT} = 0V$ ADC disabled, SCC disabled, Q_{USB} used with | | 0.2 | 0.4 | mA | | | 14_7005 | driver enabled (USBGATE_EN bit = 1, USBGATE_MODE bit = 0), $V_{USB_OVP_R} = 23V (VUSB_OVP[2:0] \text{ bits = 111}), \\ V_{VUSB} = 21V, V_{VWPC} = 0V, V_{VOUT} = 0V$ | | 0.7 | 1 | mA | | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | ADC disabled, SCC disabled, Q_{WPC} used with driver disabled (WPCGATE_EN bit = 0), $V_{WPC_OVP_R} = 23V$ (VWPC_OVP[2:0] bits = 111), $V_{WPC} = 21V$, $V_{VUSB} = 0V$, $V_{VBUS} = 0V$, $V_{VOUT} = 0V$ | | 0.2 | 0.4 | mA | | VWPC Quiescent Current | I _{Q_WPC} | ADC disabled, SCC disabled, Q_{WPC} used with driver enabled (WPCGATE_EN bit = 1, WPCGATE_MODE bit = 0), $V_{WPC_OVP_R} = 23V$ (VWPC_OVP[2:0] bits = 111), $V_{WPC} = 21V$, $V_{VUSB} = 0V$, $V_{VOUT} = 0V$ | | 0.7 | 1 | mA | | VBUS Quiescent Current | I _{Q_VBUS} | SCC enabled (SCC_MODE[2:0] = 010, SCC_EN bit = 1), Q_{USB} & Q_{WPC} used with both drivers disabled, no load, V_{VBUS} = 20V > (4 × V_{VOUT}), f_{SW} = 600kHz | | 22.9 | | mA | | Battery Only Shutdown Current | I _{SHUT_VOUT} | ADC disabled, SCC disabled, nLPM pin = low,
V _{VUSB} = 0V, V _{VWPC} = 0V, V _{VBUS} = 0V, V _{VOUT} = 4.5V | | 4.5 | 10 | μA | | Leakage Current at Pin BATP1, | I _{LKG_BAT} | V _{VOUT} < V _{BAT_INSERT_F} | | | 1 | μA | | BATP2, BATN1, BATN2 | | ADC enabled | | | 5 | μΛ | | VBAT Insert Rising Threshold | V _{BAT_INSERT_R} | VOUT pin, V _{VOUT} rising | 2.65 | 2.8 | 2.95 | V | | VBAT Insert Falling Threshold | V _{BAT_INSERT_F} | VOUT pin, V _{VOUT} falling | | 2.7 | | V | | VBAT Insert Hysteresis | V _{BAT_INSERT_HYS} | | | 100 | | mV | | External OVPFET Control | | | | | | | | VUSB Insert Rising Threshold | V _{USB_INSERT_R} | VUSB pin, V _{VUSB} rising | 3.05 | 3.25 | 3.45 | V | | VUSB Insert Falling Threshold | V _{USB_INSERT_F} | VUSB pin, V _{VUSB} falling | | 3.15 | | V | | VUSB Insert Hysteresis | $V_{USB_INSERT_HYS}$ | | | 100 | | mV | | VUSB Insert Rising Threshold Deglitch Time | tusbgate_on_deg | | | 256 | | ms | | VUSB Insert Falling Threshold Deglitch Time | t _{VUSB_OUT_DEG} | | | 20 | | ms | | VWPC Insert Rising Threshold | V _{WPC_INSERT_R} | VWPC pin, V _{VWPC} rising | 3.05 | 3.25 | 3.45 | V | | VWPC Insert Falling Threshold | V _{WPC_INSERT_F} | VWPC pin, V _{WPC} falling | | 3.15 | | V | | VWPC Insert Hysteresis | V _{WPC_INSERT_HYS} | | | 100 | | mV | | VWPC Insert Rising Threshold Deglitch Time | t _{WPCGATE_ON_DEG} | | | 256 | | ms | | VWPC Insert Falling Threshold Deglitch Time | t _{VWPC_OUT_DEG} | | | 20 | | ms | | VUSB OVP Rising Threshold Range | V _{USB_OVP_R} | I ² C programmable, 11V by default | 7.5 | | 23 | V | | VUSB OVP Threshold Accuracy | V _{USB_OVPR_ACC} | V _{USB_OVP_R} = 11V | -3 | | 3 | % | | VUSB OVP Threshold Hysteresis | V _{USB_OVP_HYS} | V_{VUSB} falling to turn on Q_{USB} again after VUSB OVP active | | 1.1 | | V | | VUSB OVP Rising Deglitch Time | t _{VUSB_OVP_DEG} | $V_{USB_OVP_R}$ = 22V, V_{VUSB} = 21V to 23V, by 10V/ μ s | | 200 | - | ns | | VUSB OVP Resume Time | t _{VUSB_OVP_RSM} | | | 128 | | ms | | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | |--|-------------------------------|--|------|------|------|-------| | VUSB2VOUT OVP Rising
Threshold Range | V _{USB2VOUT_OVP} | Only for forward mode, I ² C programmable, 100mV per step, 400mV by default | 400 | | 500 | mV | | VUSB2VOUT OVP Threshold Accuracy | V _{USB2VOUT_OVP_ACC} | $V_{USB2VOUT_OVP} = 400mV$ | | | 120 | mV | | VUSB OVP Alarm Rising
Threshold Range | V _{USBOVP_ALM_R} | Only for forward mode, I ² C programmable, 10V by default | 6.5 | | 22 | V | | VUSB OVP Alarm Threshold Accuracy | V _{USBOVP_ALM_ACC} | V _{USBOVP_ALM_R} = 10V | -3 | | 3 | % | | VUSB Pull-Down Resistor | R _{PDN_VUSB} | V _{VUSB} = 5V, VUSB_PDN_EN = 1 | | 500 | 1000 | Ω | | VWPC OVP Rising Threshold Range | V _{WPC_OVP_R} | I ² C programmable, 22V by default | 7.5 | | 23 | V | | VWPC OVP
Threshold Accuracy | V _{WPC_OVPR_ACC} | $V_{WPC_OVP_R} = 22V$ | -3 | | 3 | % | | VWPC OVP Threshold Hysteresis | V _{WPC_OVP_HYS} | V_{WPC} falling to turn on Q_{WPC} again after VWPC OVP active | | 1.1 | | V | | VWPC OVP Rising Deglitch Time | t _{VWPC_OVP_DEG} | $V_{WPC_OVP_R}$ = 22V, V_{VWPC} = 21V to 23V, by 10V/ μ s | | 200 | | ns | | VWPC OVP Resume Time | t _{VWPC_OVP_RSM} | | | 128 | | ms | | VWPC2VOUT OVP Rising
Threshold Range | V _{WPC2VOUT_OVP} | Only for forward mode, I ² C programmable, 100mV per step, 400mV by default | 400 | | 500 | mV | | VWPC2VOUT OVP Threshold Accuracy | Vwpc2vout_ovp_acc | V _{WPC2VOUT_OVP} = 400mV | -120 | | 120 | mV | | VWPC OVP Alarm Rising
Threshold Range | V _{WPCOVP_ALM_R} | Only for forward mode, I ² C programmable, 21V by default | 6.5 | | 22 | V | | VWPC OVP Alarm Threshold Accuracy | V _{WPCOVP_ALM_ACC} | V _{WPCOVP_ALM_R} = 21V | -3 | | 3 | % | | VWPC Pull-Down Resistor | R _{PDN_VWPC} | V _{VWPC} = 5V, VWPC_PDN_EN = 1 | | 500 | 1000 | Ω | | VBUS Pull-Down Resistor | R _{PDN_VBUS} | VBUS and PMID pins, V _{VBUS} = 5V,
VBUS_PDN_EN = 1 | | 5.5 | | kΩ | | REGN LDO | | | | | | | | REGN LDO Output Voltage | V_{REGN} | V _{VBUS} = 8V, I _{REGN} = 5mA | 4.8 | 5 | 5.2 | V | | Switched-Cap Converter | | | | | • | | | VBUS to VOUT Resistance | R _{DROPOUT} | Forward 1:1 mode | | 23 | | mΩ | | VBUS Present Rising Threshold | V _{BUS_PRESENT_R} | V _{VBUS} rising | 3.05 | 3.25 | 3.45 | V | | VBUS Present Falling Threshold | V _{BUS_PRESENT_F} | V_{VBUS} falling | | 3.15 | | V | | VBUS Present Hysteresis | V _{BUS_PRESENT_HYS} | | | 100 | | mV | | VBAT Brown-In Threshold for Reverse Mode | V _{BAT_BRN_IN} | VOUT pin, V _{VOUT} rising | | 3.25 | 3.4 | V | | VBAT Brown-Out Threshold for Reverse Mode | V _{BAT_BRN_OUT} | VOUT pin, V _{VOUT} falling | 2.75 | 2.95 | 3.1 | V | | VBAT Brown-In/Out Threshold Hysteresis | V _{BAT_BRN_HYS} | VOUT pin | | 300 | | mV | | VBAT Brown-Out Threshold
Deglitch Time | t _{VBAT_BRN_OUT_DEG} | | | 48 | | ms | | Converter Switching Frequency Range | f _{SW} | I ² C programmable, 600kHz by default | 400 | | 1500 | kHz | | Converter Switching Frequency Accuracy | f _{SW_ACC} | f_{SW} = 600kHz, T_J = +25°C | -5 | | 5 | % | | Protection | | | | | | | | nINT Low Pulse duration when a Protection Occurs | t _{INT} | | | 256 | | μs | | L | | 1 | | · | | | | PARAMETER | SYMBOL | 20 0, 4,11000 0 | CONDITIONS | MIN | TYP | MAX | UNITS | | |---|----------------------------|--|--|------|------|------|-------|--| | | | | I ² C programmable, 21V by default | 21 | | 22 | V | | | | | In forward 4:1 / reverse 1:4 mode | Accuracy at 21V V _{BUS_OVP_R} | -3 | | 3 | % | | | | | leverse 1.4 mode | V _{BUS_OVP} hysteresis | | 0.85 | | V | | | | | | I ² C programmable, 12V by default | 12 | | 13 | V | | | VBUS OVP Rising Threshold Range | $V_{BUS_OVP_R}$ | In forward 2:1 / reverse 1:2 mode | Accuracy at 12V V _{BUS_OVP_R} | -3 | | 3 | % | | | range | | TOVOIGO 1.2 Mode | V _{BUS_OVP} hysteresis | | 0.85 | | V | | | | | | I ² C programmable, 5.6V by default | 5.6 | | 6 | V | | | | | In forward 1:1 / reverse 1:1 mode | Accuracy at 5.6V V _{BUS_OVP_R} | -3.5 | | 3.5 | % | | | | | | V _{BUS_OVP} hysteresis | | 160 | | mV | | | VBUS OVP Rising Deglitch Time | t _{VBUS_OVPR_DEG} | | | | 1 | | ms | | | | | In forward 4:1 / re | everse 1:4 mode | 25.2 | 26 | 26.8 | | | | VBUS Peak OVP Rising Threshold | $V_{\text{BUS_PK_OVP}}$ | In forward 2:1 / re | everse 1:2 mode | 15.5 | 16 | 16.5 | V | | | | | In forward 1:1 / re | everse 1:1 mode | 6.75 | 7 | 7.25 | | | | VBUS Peak OVP Rising Deglitch Time | t _{VBUS_PK_DEG} | | | | 100 | | ns | | | | V _{BUS_UVP_} F | | I ² C programmable, 13V by default | 12 | | 13 | V | | | | | In forward 4:1 mode | Accuracy at 13V V _{BUS_UVP_F} | -3 | | 3 | % | | | VBUS UVP Falling Threshold | | mode | V _{BUS_UVP} hysteresis | | 0.45 | | V | | | Range for Forward Mode | | In forward 2:1 mode | I ² C programmable, 6.5V by default | 6 | | 6.5 | V | | | | | | Accuracy at 6.5V V _{BUS_UVP_F} | -3 | | 3 | % | | | | | mode | V _{BUS_UVP} hysteresis | | 0.45 | | V | | | VBUS UVP Falling Deglitch Time | t _{VBUS_UVPF_DEG} | | | | 10 | | ms | | | IBUS UCP Rising Threshold | I _{BUS_UCP_R} | | | 100 | 200 | 300 | mA | | | IBUS UCP Falling Threshold | I _{BUS_UCP_F} | Falling, I _{BUS_UCP_F} | = 100mA | 50 | 100 | 150 | mA | | | | | | In forward 4:1 mode | 3.75 | | 4 | | | | | | | In forward 2:1 / forward 1:1 mode | 6 | | 7 | | | | IBUS OCP Threshold Range | I _{BUS_OCP} | I ² C programmable | In reverse 1:4 mode | 1.25 | | 1.5 | Α | | | | | | In reverse 1:2 mode | 2.5 | | 3 | | | | | | | In reverse 1:1 mode | 0.5 | | 6 | | | | IBUS OCP Threshold Accuracy | I _{BUS_OCP_ACC} | I _{BUS_OCP} = 3.75A accuracy | (in forward 4:1 mode), internal | -4 | | 4 | % | | | IBUS Reverse OCP Threshold
Range in Forward Mode | I _{BUS_RCP} | In forward mode | | | 0.7 | | Α | | | VOUT OVP Rising Threshold Range | V _{OUT_OVP_R} | I ² C programmable | , 200mV per step, 4.8V by default | 4.6 | | 5.2 | V | | | VOUT OVP Threshold Accuracy | V _{OUT_OVP_ACC} | V _{OUT_OVP_R} = 4.8V | | -3 | | 3 | % | | | VOUT OVP Threshold Hysteresis | V _{OUT_OVP_HYS} | | | | 100 | | mV | | | VBATx OVP Rising Threshold Range | V _{BAT_OVP_R} | I ² C programmable, 100mV per step, 4.6V by default | | 4.5 | | 5.2 | V | | | VBATx OVP Threshold Accuracy | V _{BAT_OVP_ACC} | V _{BATX OVP R} = 4.6V, internal accuracy | | -0.5 | | 0.5 | % | | | VBATx OVP Threshold Hysteresis | V _{BAT_OVP_HYS} | | | | 100 | | mV | | | IBAT OCP Threshold Range | I _{BAT_OCP} | Bidirectional I _{BAT} default | , I ² C programmable, 8.5A by | 5 | | 15 | Α | | | IBAT OCP Threshold Accuracy | I _{BAT_OCP_ACC} | I _{BAT} = 8.5A, R _{SNS} = | = 2mΩ | -2 | | 2 | % | | | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | | |---|-----------------------------|--|------|-----|-----|----------|--| | TDIE OTP Rising Threshold Range | $T_{DIE_OTP_R}$ | l ² C programmable, 20°C per step, +140°C by default | 80 | | 140 | °C | | | TDIE OTP Threshold Accuracy | $T_{DIE_OTP_ACC}$ | | -5 | | 5 | °C | | | TDIE OTP Threshold Hysteresis | $T_{DIE_OTP_HYS}$ | | | 20 | | °C | | | TDIE OTP Alarm Rising Threshold Range | $T_{DIEOTP_ALM_R}$ | I ² C programmable, 20°C per step, +120°C by default | 60 | | 120 | °C | | | TDIE OTP Alarm Threshold
Accuracy | T _{DIEOTP_ALM_ACC} | | -5 | | 5 | °C | | | TDIE OTP Alarm Threshold
Hysteresis | T _{DIEOTP_ALM_HYS} | | | 20 | | °C | | | Watchdog Time Out Range | t _{WDT} | I ² C programmable, 1s by default | 0.5 | | 4 | s | | | ADC Specification | | , | | | | | | | ADC Resolution | ADC_RES | | | 12 | | bits | | | ADC VUSB Voltage Readable in | V | Effective range | 3 | | 22 | V | | | REG0x24 and REG0x25 | V_{USB_ADC} | LSB | | 6 | | mV | | | | | V _{VUSB} = 10V, internal accuracy, T _J = +25°C | -1.3 | | 0.3 | | | | VIJED ADC Acquirect | V | V _{VUSB} = 10V, internal accuracy, T _J = 0°C to +125°C | -1.3 | | 0.4 | % | | | VUSB ADC Accuracy | V _{USB_ADC_ACC} | V _{VUSB} = 20V, internal accuracy, T _J = +25°C | -0.8 | | 0.8 | | | | | | V _{VUSB} = 20V, internal accuracy, T _J = 0°C to +125°C | -0.8 | | 0.8 | | | | ADC VWPC Voltage Readable in
REG0x26 and REG0x27 | V _{WPC_ADC} | Effective range | 3 | | 22 | V | | | | | LSB | | 6 | | mV | | | | V _{WPC_ADC_ACC} | V _{VWPC} = 10V, internal accuracy, T _J = +25°C | -1.0 | | 0.8 | | | | NAMBO ABO Assume | | V _{VWPC} = 10V, internal accuracy, T _J = 0°C to +125°C | -1.1 | | 0.8 | % | | | VWPC ADC Accuracy | | V _{VWPC} = 20V, internal accuracy, T _J = +25°C | -0.7 | | 1.2 | | | | | | V _{VWPC} = 20V, internal accuracy, T _J = 0°C to +125°C | -0.7 | | 1.2 | | | | ADC VBUS Voltage Readable in | | Effective range | 3 | | 22 | V | | | REG0x22 and REG0x23 | $V_{ t BUS_ADC}$ | LSB | | 6 | | mV | | | | | V _{VBUS} = 10V, internal accuracy, T _J = +25°C | -1.0 | | 0.5 | | | | VBU2 4 B 2 4 | ., | V _{VBUS} = 10V, internal accuracy, T _J = 0°C to +125°C | -1.1 | | 0.5 | 01 | | | VBUS ADC Accuracy | $V_{BUS_ADC_ACC}$ | V _{VBUS} = 20V, internal accuracy, T _J = +25°C | -0.6 | | 0.9 | - % | | | | | V _{VBUS} = 20V, internal accuracy, T _J = 0°C to +125°C | -0.6 | | 0.9 | | | | ADC IBUS Current Readable in | | Effective range | -6 | | 6 | Α | | | REG0x28 and REG0x29 | I _{BUS_ADC} | LSB | | 2 | | mA | | | | | I _{BUS} = 1A, internal accuracy, T _J = 0°C to +125°C | -4 | | 6 | | | | IBUS ADC Accuracy | I _{BUS_ADC_ACC} | I _{BUS} = 2A, internal accuracy, T _J = 0°C to +125°C | -4 | | 5 | % | | | | | I _{BUS} = 5A, internal accuracy, T _J = 0°C to +125°C | -4 | | 4 | | | | ADC VBAT1 Voltage Readable in | V | Effective range | 3 | | 5 | V | | | REG0x2E and REG0x2F | V_{BAT1_ADC} | LSB | | 2 | | mV | | | ADC VBAT2 Voltage Readable in | V | Effective range | 3 | | 5 | V | | | REG0x30 and REG0x31 | V _{BAT2_ADC} | LSB | | 2 | | mV | | | VBATx ADC Accuracy | $V_{\text{BATx_ADC_ACC}}$ | Internal accuracy, T _J = 0°C to +125°C | -0.6 | | 0.6 | % | | | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | |---|----------------------------|--|------|-------|------|-------| | ADC IBAT Current Readable in | | Effective range | -6 | | 16 | Α | | REG0x34 and REG0x35 | I _{BAT_ADC} | LSB | | 4 | | mA | | | | I_{BAT} = 1A, R_{SNS} = 1m Ω , internal accuracy, T_J = 0°C to +125°C | -4 | | 4 | % | | IBAT ADC Accuracy | I _{BAT_ADC_ACC} | I_{BAT} = 2A, R_{SNS} = 1mΩ, internal accuracy, T_J = 0°C to +125°C | -3 | | 3 | % | | | | I_{BAT} = 10A, R_{SNS} = 1mΩ, internal accuracy, T_J = 0°C to +125°C | -2 | | 2
 % | | ADC VOUT Voltage Readable in | V_{OUT_ADC} | Effective range | 3 | | 5 | V | | REG0x32 and REG0x33 | V OUT_ADC | LSB | | 2 | | mV | | VOUT ADC Accuracy | $V_{\text{OUT_ADC_ACC}}$ | V_{VOUT} = 3V to 5.1V, internal accuracy,
T_J = 0°C to +125°C | -1 | | 0.4 | % | | ADC DIE Temperature Readable | T | Effective range | -40 | | 150 | °C | | in REG0x36 | T_{DIE_ADC} | LSB | | 1 | | °C | | TDIE ADC Accuracy | $T_{DIE_ADC_ACC}$ | | -5 | | 5 | °C | | I ² C Interface (SCL and SDA Pins) | | | | | | | | High Level Input Voltage | V_{IH_I2C} | SCL and SDA pins | 0.9 | | | V | | Low Level Input Voltage | V_{IL_I2C} | SCL and SDA pins | | | 0.4 | V | | Low Level Output Voltage | V_{OL_SDA} | Sink 2mA, SDA pin | | | 0.4 | mV | | SCL Clock Frequency | f _{CLK} | | 100 | | 1000 | kHz | | Logic I/O Threshold (nLPM and n | INT Pins) | | | | | | | High Level Input Voltage | V_{IH} | nLPM pin | 0.9 | | | V | | Low Level Input Voltage | V _{IL} | nLPM pin | | | 0.4 | V | | nLPM Pull-Down Resistance | R _{PDN_nLPM} | Pulled down to AGND | | 1.3 | | МΩ | | Low Level Output Voltage | V _{OL} | Sink 2mA, nINT pin | | | 0.4 | V | | BC1.2/SCP Detection (DP and DN | l Pins) | | | | | | | Data Contact Detect Current Source | I _{DP_SRC} | DP pin, T _J = +25°C | 7 | 10 | 13 | μΑ | | DM Pull-Down Resistance | R _{DM_DWN} | DM pin | 16 | 18 | 20 | kΩ | | Data Contact Detect Logic Low
Threshold | V_{LGC_LOW} | DP pin | | | 0.95 | V | | Data Contact Detect Debounce Time | t_{DCD_DBNC} | | | 15 | | ms | | DP Force Detect Voltage | V_{DP_SRC} | DP pin | 0.55 | 0.6 | 0.65 | V | | DM Sink Current | I _{DM_SNK} | DM pin | 60 | 100 | 140 | μΑ | | DP Voltage Source On Time | t _{VDPSRC_ON} | DP pin | | 60 | | ms | | Pull-Down Detect Threshold | V_{DAT_REF} | | 0.25 | 0.325 | 0.4 | V | | DM Force Detect Voltage | V_{DM_SRC} | DM pin | 0.55 | 0.6 | 0.65 | V | | DP Sink Current | I _{DP_SNK} | DP pin | 60 | 100 | 140 | μΑ | | DM Voltage Source On Time | t _{VDMSRC_ON} | DM pin | | 60 | | ms | #### TYPICAL PERFORMANCE CHARACTERISTICS ### **TYPICAL PERFORMANCE CHARACTERISTICS (continued)** #### **FUNCTIONAL BLOCK DIAGRAM** Figure 2. Functional Block Diagram # I²C REGISTER ADDRESS MAP All registers are 8-bit and individual bits are named from D[0] (LSB) to D[7] (MSB). The device I²C Address is determined by the state of CDRVL_ADS pin in the POR sequence, as described in I²C Address Setting section. | FUNCTION | STAT | FLAG | MASK | THRESHOLD SETTING | ENABLE | DEGLITCH | | |---------------|---------|---------|---------|--|-------------------|----------|--| | REG_RST | | | | | 0x03[7] | | | | SCC_MODE | 0x04[4] | | | 0x03[6:4] | 0x04[7] | | | | WATCHDOG | | 0x19[5] | 0x1A[5] | 0x03[2:0] | 0x03[3] | | | | FSW_SET | | | | 0x07[7:5] | - | | | | FSW_SHIFT | | | | 0x07[4:3] | 0x07[4:3] | | | | FSW_DITHER | | | | | 0x07[2] | | | | USBGATE | 0x0F[1] | | | | 0x04[2] & 0x0F[3] | | | | VUSB2VOUT_OVP | | 0x13[7] | 0x14[7] | 0x05[7] | 0x37[6] | 0x05[6] | | | VUSB_OVP_ALM | | 0x1B[7] | 0x1C[7] | 0x05[5:3] | 0x39[2] | | | | VUSB_OVP | | 0x11[7] | 0x12[7] | 0x05[2:0] | 0x37[5] | | | | VUSB_ABSENT | | 0x11[1] | 0x12[1] | | 0x37[7] | | | | VUSB_INSERT | | 0x17[1] | 0x18[1] | | - | | | | VUSB_PDN | | 0x11[6] | 0x12[6] | | 0x0F[6] | | | | WPCGATE | 0x0F[0] | | | | 0x04[0] & 0x0F[2] | | | | VWPC2VOUT_OVP | | 0x13[6] | 0x14[6] | 0x06[7] | 0x37[3] | 0x06[6] | | | VWPC_OVP_ALM | | 0x1B[6] | 0x1C[6] | 0x06[5:3] | 0x39[1] | | | | VWPC_OVP | | 0x11[5] | 0x12[5] | 0x06[2:0] | 0x37[2] | | | | VWPC_ABSENT | | 0x11[0] | 0x12[0] | | 0x37[4] | | | | VWPC_INSERT | | 0x17[0] | 0x18[0] | | - | | | | VWPC_PDN | | 0x11[4] | 0x12[4] | | 0x0F[5] | | | | VBUS_OVP | | 0x11[3] | 0x12[3] | F41 & R14: 0x08[7]
F21 & R12: 0x08[6]
F11 & R11: 0x08[5] | 0x37[1] | | | | VBUS_PK_OVP | | | | | 0x37[0] | | | | VBUS_PRESENT | | 0x19[7] | 0x1A[7] | | | | | | VBUS_UVP | | 0x17[3] | 0x18[3] | F41: 0x0C[1] | 0x39[6] | | | | VB05_0VF | | 0x17[2] | 0x18[2] | F21: 0x0C[0] | 0/09[0] | | | | VBUS_PDN | | 0x11[2] | 0x12[2] | | 0x0F[4] | | | | VBUS_ABSENT | | 0x19[4] | 0x1A[4] | | 0x39[7] | 0x0C[3] | | | VBUS_LO | | 0x1B[4] | 0x1C[4] | | 0x3A[5] | | | | VBUS_HI | | 0x1B[3] | 0x1C[3] | | 0x3A[4] | | | | PMID2VOUT_UVP | | 0x13[5] | 0x14[5] | 0x0A[7:6] | 0x38[4] | 0x0A[5] | | | PMID2VOUT_OVP | | 0x13[4] | 0x14[4] | 0x0A[4:3] | 0x38[3] | 0x0A[2] | | | | | 0x13[3] | 0x14[3] | F41: 0x0B[7] | | | | | | | 0x13[2] | 0x14[2] | F21 & F11: 0x0B[6] | | | | | IBUS_OCP | | 0x13[1] | 0x14[1] | R14: 0x0B[5] | 0x38[2] | 0x0B[3] | | | | | 0x13[0] | 0x14[0] | R12: 0x0B[4]
R11: 0x0A[1:0] &
0xD0[2:1] | | | | # I²C REGISTER ADDRESS MAP (continued) | FUNCTION | STAT | FLAG | MASK | THRESHOLD SETTING | ENABLE | DEGLITCH | |-----------------------------|------|---------|---------|--|---------|-----------| | IBUS_UCP_FALL | | 0x17[5] | 0x18[5] | | 0x38[1] | 0x0B[2] | | IBUS_UCP_TIMEOUT | | 0x19[3] | 0x1A[3] | 0x0B[1:0] | 0x38[1] | | | IBUS_RCP | | 0x17[4] | 0x18[4] | | 0x38[0] | 0x0C[2] | | VOUT_OVP | | 0x15[0] | 0x16[0] | 0x08[4:3] | 0x38[7] | 0x08[2] | | VBAT_INSERT | | 0x19[6] | 0x1A[6] | | | | | VBAT_BRN_OUT | | 0x19[0] | 0x1A[0] | | 0x3A[6] | | | VPAT OVD | | 0x15[7] | 0x16[7] | VBAT1: 0x0D[7:5] | 0x39[5] | 0x0D[4] | | VBAT_OVP | | 0x15[6] | 0x16[6] | VBAT2: 0x0D[3:1] | 0x39[4] | 0x0D[0] | | VPAT OVP ALM | | 0x1B[2] | 0x1C[2] | VBAT1: 0x1D[7:6] | 0x3A[3] | | | VBAT_OVP_ALM | | 0x1B[1] | 0x1C[1] | VBAT2: 0x1D[5:4] | 0x3A[2] | | | IBAT_OCP | | 0x15[5] | 0x16[5] | 0x0E[7:4] & 0x0E[3:2] | 0x39[3] | 0x0F[7] | | IBAT_OCP_ALM | | 0x1B[0] | 0x1C[0] | 0x1D[3:2] | 0x3A[1] | | | PEAK_OCP
(Bidirectional) | - | 0x17[6] | 0x18[6] | Q _{4x} : 0x09[3]
Q _{3x} : 0x09[2]
Q _{2x} : 0x09[1]
Q _{1x} : 0x09[0] | 0x38[5] | | | PIN_DIAG | 1 | 0x19[1] | 0x1A[1] | | | | | TDIE_OTP | - | 0x15[1] | 0x16[1] | 0x0C[7:6] | 0x3A[7] | | | TDIE_OTP_ALM | - | 0x1B[5] | 0x1C[5] | 0x0C[5:4] | 0x39[0] | | | ADC | | 0x19[2] | 0x1A[2] | 0x20[6] | 0x20[7] | 0x21[1:0] | #### **SGM41611** #### **REGISTER AND DATA** Bit Types: R: Read only R/W: Read/Write RC: Read clears the bit R/WC: Read/Write. Writing a '1' clears the bit. Writing a '0' has no effect. NOTE: Excepted for the specified bits, all other register bits are reset to their default values if a hard reset is triggered. #### REG0x00: DEVICE_INFO0 Register [reset = 0x0A] | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |--------|-----------------|---------|------|------------------------------|----------| | D[7:4] | DEVICE_VER[3:0] | 0000 | R | Device Version | N/A | | D[3:0] | DEVICE_ID[3:0] | 1010 | R | Device ID
1010 = SGM41611 | N/A | #### REG0x01: DEVICE_INFO1 Register [reset = 0x00] | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |--------|--------------|---------|------|------------------|----------| | D[7:4] | ROM_ID[3:0] | 0000 | R | ROM ID | N/A | | D[3:0] | CNFG_ID[3:0] | 0000 | R | Configuration ID | N/A | ### REG0x02: DEVICE_INFO2 Register [reset = 0x00] | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |--------|------------|---------|------|-------------|----------| | D[7:4] | PE_ID[3:0] | 0000 | R | PE ID | N/A | | D[3:0] | Reserved | 0000 | R | Reserved | N/A | ### **REG0x03: CONTROL1 Register [reset = 0x01]** | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |--------|----------------|---------|------|---|------------------------------------| | D[7] | REG_RST | 0 | R/WC | Register Reset Bit 0 = No register reset (default) 1 = Reset registers to their default values. When enabled, the associated register bits are reset to their default values and then this bit is automatically reset to 0. | Hard-reset or
REG_RST | | D[6:4] | SCC_MODE[2:0] | 000 | R/W | Switched-Cap Converter Operation Mode Control Bits 000 = Forward 1:1 charger mode (default) 001 = Forward 2:1 charger mode 010 = Forward 4:1 charger mode 011 = Reverse 1:1 converter mode 100 = Reverse 1:2 converter mode 101 = Reverse 1:4 converter mode 101 = Reverse 1:4 converter mode 110 ~ 111 = Reserved Notes: 1. These bits are not allowed to change during operation. 2. Before forward 2:1 charge mode is enabled, F21_PERFORMANCE bit in REG0x08 should be set to 1. | Hard-reset or
REG_RST or
WDT | | D[3] | WDT_DIS | 0 | R/W | Watchdog Timer Disable Bit 0 = Enabled (default) 1 = Disabled | Hard-reset or REG_RST | | D[2:0] | WDT_TIMER[2:0] | 001 | R/W | Watchdog Timer Setting Bits 000 = 0.5s 001 = 1s (default) 010 = 2s 011 = 4s 100 ~ 111 = Reserved When the watchdog timer times out, the device first resets the SCC_EN bit to 0, and then resets SCC_MODE[2:0] bits to 000. | Hard-reset or
REG_RST | #### **REG0x04: CONTROL2 Register [reset = 0x05]** | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |--------|--------------|---------|------|---|------------------------------------| | D[7] | SCC_EN | 0 | R/W | Switched-Cap Converter Enable Bit 0 = Disabled (default) 1 = Enabled. If any fault has occurred, device returns to standby mode and this bit is automatically cleared to 0. | Hard-reset or
REG_RST or
WDT | | D[6:5] | Reserved | 00 | R | Reserved | N/A | | D[4] | SCC_SW_STAT | 0 | R | Switched-Cap Converter Switching
State Bit 0 = SCC is not in switching mode 1 = SCC is in switching mode | Hard-reset or REG_RST | | D[3] | USBGATE_MODE | 0 | R/W | USBGATE Operation Mode Setting Bit 0 = Auto mode for SCC forward operation (default) 1 = Manual mode | Hard-reset or REG_RST | | D[2] | USBGATE_EN | 1 | R/W | USBGATE Driver Enable Bit 0 = Disable USBGATE output 1 = Enable USBGATE output high (default) | Hard-reset or REG_RST | | D[1] | WPCGATE_MODE | 0 | R/W | WPCGATE Operation Mode Setting Bit 0 = Auto mode for SCC forward operation (default) 1 = Manual mode | Hard-reset or REG_RST | | D[0] | WPCGATE_EN | 1 | R/W | WPCGATE Driver Enable Bit 0 = Disable WPCGATE output 1 = Enable WPCGATE output high (default) | Hard-reset or REG_RST | REG0x05: VUSB_OVP Register [reset = 0x09] | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |--------|-----------------------|---------|------|---|--------------------------| | ыз | DII NAME | DEFAULT | IIFE | VUSB2VOUT OVP Protection Rising Threshold Setting Bit for | RESELIBI | | D[7] | VUSB2VOUT_OVP | 0 | R/W | Forward Mode V _{USB2VOUT} = V _{VUSB} /n - V _{VOUT} (n = 1, 2, or 4, depending on the operation mode) 0 = The V _{USB2VOUT} OVP rising threshold is 0.4V (default) 1 = The V _{USB2VOUT} OVP rising threshold is 0.5V | Hard-reset or
REG_RST | | D[6] | VUSB2VOUT_OVP
_DEG | 0 | R/W | VUSB2VOUT OVP Protection Deglitch Time (t _{VUSB2VOUT_OVP_DEG}) Setting
Bit for Forward Mode
0 = 100ns (default)
1 = 128µs | Hard-reset or
REG_RST | | D[5:3] | VUSB_OVP_ALM[2:0] | 001 | R/W | VUSB OVP Alarm Rising Threshold Setting Bits for Forward Mode The VUSB OVP alarm rising threshold should be set lower than $V_{USB_OVP_R}$ to ensure proper operation. $000 = 6.5V$ $001 = 10V \text{ (default)}$ $010 = 11V$ $011 = 12V$ $100 = 19V$ $101 = 20V$ $110 = 21V$ $111 = 22V$ | Hard-reset or
REG_RST | | D[2:0] | VUSB_OVP[2:0] | 001 | R/W | VUSB OVP Protection Rising Threshold Setting Bits for Forward Mode The VUSB OVP protection rising threshold should be set higher than VUSBOVP_ALM_R to ensure proper operation. 000 = 7.5V 001 = 11V (default) 010 = 12V 011 = 13V 1100 = 20V 101 = 21V 110 = 22V 111 = 23V | Hard-reset or
REG_RST | REG0x06: VWPC_OVP Register [reset = 0x36] | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |--------|-----------------------|---------|------|---|--------------------------| | D[7] | VWPC2VOUT_OVP | 0 | R/W | VWPC2VOUT OVP Protection Rising Threshold Setting Bit for Forward Mode | | | D[6] | VWPC2VOUT
_OVP_DEG | 0 | R/W | VWPC2VOUT OVP Protection Deglitch Time (twpczvout_ovp_deg) Setting Bit for Forward Mode 0 = 100ns (default) 1 = 128µs | Hard-reset or
REG_RST | | D[5:3] | VWPC_OVP_ALM[2:0] | 110 | R/W | VWPC OVP Alarm Rising Threshold Setting Bits for Forward Mode The VWPC OVP alarm rising threshold should be set lower than $V_{WPC_OVP_R} \text{ to ensure proper operation.}$ $000 = 6.5V$ $001 = 10V$ $010 = 11V$ $011 = 12V$ $100 = 19V$ $101 = 20V$ $110 = 21V \text{ (default)}$ $111 = 22V$ | Hard-reset or
REG_RST | | D[2:0] | VWPC_OVP[2:0] | 110 | R/W | WWPC OVP Protection Rising Threshold Setting Bits for Forward Mode The VWPC OVP protection rising threshold should be set higher than VWPCOVP_ALM_R to ensure proper operation. 000 = 7.5V 001 = 11V 010 = 12V 011 = 13V 1100 = 20V 101 = 21V 110 = 22V (default) 111 = 23V | Hard-reset or
REG_RST | REG0x07: SC_CTRL Register [reset = 0x40] | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |--------|-------------------------|---------|------|---|--------------------------| | D[7:5] | FSW_SET[2:0] | 010 | R/W | Switched-Cap Converter Switching Frequency Setting Bits 000 = 400kHz 001 = 500kHz 010 = 600kHz (default) 011 = 750kHz 100 = 850kHz 101 = 1000kHz 110 = 1250kHz 111 = 1500kHz Note: These bits are allowed to change to the adjacent setting during switching. | Hard-reset or
REG_RST | | D[4:3] | FSW_SHIFT[1:0] | 00 | R/W | Bits of Adjusting Switching Frequency for EMI 00/11 = Nominal frequency (default) 01 = Nominal frequency +10% 10 = Nominal frequency -10% | Hard-reset or
REG_RST | | D[2] | FSW_DITHER_EN | 0 | R/W | Switching Frequency Dithering Enable Bit 0 = Disabled (default) 1 = Enabled. Dither varies switching frequency ±10% | Hard-reset or REG_RST | | D[1] | USBFET_ON_
DIRECTION | 0 | R/W | Direction Control Bit to turn on external USB FET. 0 = Forward (VUSB present, turn on USB FET) 1 = Reverse (VBUS present, turn on USB FET) Note: When the OVPFET operates in reverse manual mode, set this bit to 1 before turn-on USB FET. | Hard-reset or
REG_RST | | D[0] | WPCFET_ON_
DIRECTION | 0 | R/W | Direction Control Bit to turn on external WPC FET. 0 = Forward (VWPC present, turn on WPC FET) 1 = Reverse (VBUS present, turn on WPC FET) Note: When the OVPFET operates in reverse manual mode, set this bit to 1 before turn-on WPC FET. | Hard-reset or
REG_RST | ### REG0x08: VBUS&VOUT_OVP Register [reset = 0x0C] | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |--------|-----------------|---------|------|--|--------------------------| | D[7] | VBUS_OVP41 | 0 | R/W | Setting Bit of VBUS OVP Protection Rising Threshold for 4:1 or 1:4 Mode 0 = 21V (default) 1 = 22V | Hard-reset or
REG_RST | | D[6] | VBUS_OVP21 | 0 | R/W | Setting Bit of VBUS OVP Protection Rising Threshold for 2:1 or 1:2 Mode 0 = 12V (default) 1 = 13V | Hard-reset or
REG_RST | | D[5] | VBUS_OVP11 | 0 | R/W | Setting Bit of VBUS OVP Protection Rising Threshold for Forward or Reverse 1:1 Mode 0 = 5.6V (default) 1 = 6V | Hard-reset or
REG_RST | | D[4:3] | VOUT_OVP[1:0] | 01 | R/W | VOUT OVP Protection Rising Threshold Setting Bits V _{OUT_OVP_R} = 4.6V + VOUT_OVP[1:0] × 200mV 00 = 4.6V 01 = 4.8V (default) 10 = 5V 11 = 5.2V | Hard-reset or
REG_RST | | D[2] | VOUT_OVP_DEG | 1 | R/W | VOUT OVP Protection Deglitch Time (t _{VOUT_OVPR_DEG}) Setting Bit 0 = 100µs 1 = 1ms (default) | Hard-reset or REG_RST | | D[1] | F21_PERFORMANCE | 0 | R/W | Forward 2:1 Mode Switching Setting Bit Before forward 2:1 charge mode is enabled, this bit should be set to 1. | Hard-reset or REG_RST | | D[0] | Reserved | 0 | R | Reserved | N/A | **REG0x09: PEAK_OCP Register [reset = 0x00]** | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |--------|--------------|---------|------|--|-----------------------| | D[7:4] | Reserved | 0000 | R | Reserved | N/A | | D[3] | PEAK_OCP_Q4x | 0 | R/W | Q _{4x} Bidirectional Peak OCP Protection Threshold Setting Bit 0 = 9.5A (default) 1 = 11.5A | Hard-reset or REG_RST | | D[2] | PEAK_OCP_Q3x | 0 | R/W | Q _{3x} Bidirectional Peak OCP Protection Threshold Setting Bit 0 = 17.5A (default) 1 = 20A | Hard-reset or REG_RST | | D[1] | PEAK_OCP_Q2x | 0 | R/W | Q _{2X} Bidirectional Peak OCP Protection Threshold Setting Bit 0 = 17.5A (default) 1 = 20A | Hard-reset or REG_RST | | D[0] | PEAK_OCP_Q1x | 0 | R/W | Q _{1x} Bidirectional Peak OCP Protection Threshold Setting Bit 0 = 13A (default) 1 = 16A | Hard-reset or REG_RST | ### REG0x0A: PMID2VOUT_PROT Register [reset = 0x41] | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |--------|-----------------------|---------|------|---|--------------------------| | D[7:6] | PMID2VOUT_UVP[1:0] | 01 | R/W | PMID2VOUT UVP Protection Falling Threshold Setting Bits V_PMID2VOUT = V_PMID/n - V_VOUT (n = 1, 2, or 4, depending on the operation mode) V_PMID2VOUT_UVP = -25mV - PMID2VOUT_UVP[1:0] × 25mV for the forward operation mode V_PMID2VOUT_UVP_RVS = -50mV - PMID2VOUT_UVP[1:0] × 50mV for the reverse operation mode 00 = -25mV for forward or -50mV for reverse 01 = -50mV for forward or -100mV for reverse (default) 10 = -75mV for forward or -150mV for reverse 11 = -100mV for forward or -200mV for reverse | Hard-reset or
REG_RST | | D[5] | PMID2VOUT_UVP_
DEG | 0 | R/W | PMID2VOUT UVP Protection Deglitch Time ($t_{PMID2VOUT_UVP_DEG}$) Setting Bit $0 = 8\mu s$ (default) $1 = 1ms$ | Hard-reset or
REG_RST | | D[4:3] | PMID2VOUT_OVP[1:0] | 00 | R/W | PMID2VOUT OVP Protection Rising Threshold Setting Bits $V_{PMID2VOUT} = V_{PMID}/n - V_{VOUT} \ (n = 1, 2, or 4, depending on the operation mode) \\ V_{PMID2VOUT_OVP} = 200mV + PMID2VOUT_OVP[1:0] \times 100mV \\ 00 = 200mV \ (default) \\ 01 = 300mV \\ 10 = 400mV \\ 11 = 500mV$ | Hard-reset or
REG_RST | | D[2] | PMID2VOUT_OVP_
DEG | 0 | R/W | PMID2VOUT OVP Protection Deglitch Time (t _{PMID2VOUT_OVP_DEG}) Setting Bit 0 = 100ns
(default) 1 = 128µs | Hard-reset or
REG_RST | | D[1:0] | IBUS_OCP_R11[1:0] | 01 | R/W | Setting Bits of IBUS OCP Protection Threshold for Reverse 1:1 Mode 00 = 0.5A 01 = 1A (default) 10 = 2A 11 = 3A Note: These bits configurations are valid only when IBUS_OCP_R11_E[1:0] = 00 in REG0xD0. | Hard-reset or
REG_RST | REG0x0B: IBUS_PROT Register [reset = 0x31] | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |--------|-------------------|---------|------|--|--------------------------| | D[7] | IBUS_OCP41 | 0 | R/W | Setting Bit of IBUS OCP Protection Threshold for Forward 4:1 Mode 0 = 3.75A (default) 1 = 4A | Hard-reset or REG_RST | | D[6] | IBUS_OCP21 | 0 | R/W | Setting Bit of IBUS OCP Protection Threshold for Forward 2:1 Mode and Forward 1:1 Mode 0 = 6A (default) 1 = 7A | Hard-reset or
REG_RST | | D[5] | IBUS_OCP14 | 1 | R/W | Setting Bit of IBUS OCP Protection Threshold for Reverse 1:4 Mode 0 = 1.25A 1 = 1.5A (default) | Hard-reset or REG_RST | | D[4] | IBUS_OCP12 | 1 | R/W | Setting Bit of IBUS OCP Protection Threshold for Reverse 1:2 Mode 0 = 2.5A 1 = 3A (default) | Hard-reset or REG_RST | | D[3] | IBUS_OCP_DEG | 0 | R/W | IBUS OCP Protection Deglitch Time (t _{iBUS_OCP_DEG}) Setting Bit 0 = 4μs (default) 1 = 64μs | Hard-reset or REG_RST | | D[2] | IBUS_UCP_FALL_DEG | 0 | R/W | IBUS UCP Protection Falling Deglitch Time (t _{IBUS_UCPF_DEG}) Setting Bit 0 = 32ms (default) 1 = 256ms | Hard-reset or REG_RST | | D[1:0] | IBUS_UCP_BLK[1:0] | 01 | R/W | IBUS UCP Protection Blanking Time Setting Bits After soft-start, t _{IBUS_UCP_BLK} = 100ms × 2 ^ IBUS_UCP_BLK[1:0] 00 = 100ms 01 = 200ms (default) 10 = 400ms 11 = 800ms | Hard-reset or
REG_RST | **REG0x0C: VBUS_PROT Register [reset = 0xFB]** | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |--------|-------------------|---------|------|--|--------------------------| | D[7:6] | TDIE_OTP[1:0] | 11 | R/W | TDIE OTP Protection Rising Threshold Setting Bits $T_{DIE_OTP_R} = 80^{\circ}\text{C} + \text{TDIE_OTP}[1:0] \times 20^{\circ}\text{C}$ $00 = +80^{\circ}\text{C}$ $01 = +100^{\circ}\text{C}$ $10 = +120^{\circ}\text{C}$ $11 = +140^{\circ}\text{C} \text{ (default)}$ | Hard-reset or
REG_RST | | D[5:4] | TDIE_OTP_ALM[1:0] | 11 | R/W | TDIE OTP Alarm Rising Threshold Setting Bits $T_{DIE_ALM_R} = 60^{\circ}\text{C} + \text{TDIE_OTP[1:0]} \times 20^{\circ}\text{C}$ The TDIE OTP alarm rising threshold should be set lower than $T_{DIE_OTP_R}$ to ensure proper operation. $00 = +60^{\circ}\text{C}$ $01 = +80^{\circ}\text{C}$ $10 = +100^{\circ}\text{C}$ $11 = +120^{\circ}\text{C}$ (default) | Hard-reset or
REG_RST | | D[3] | VBUS_OUT_DEG | 1 | R/W | VBUS Absent Falling Deglitch Time (t _{VBUS_OUT_DEG}) Setting Bit 0 = 10ms 1 = 20ms (default) | Hard-reset or
REG_RST | | D[2] | IBUS_RCP_DEG | 0 | R/W | IBUS RCP Protection Deglitch Time ($t_{\text{IBUS_RCP_DEG}}$) Setting Bit for Forward Mode $0 = 500 \text{ns}$ (default) $1 = 4 \mu \text{s}$ | Hard-reset or REG_RST | | D[1] | VBUS_UVP41 | 1 | R/W | Setting Bit of VBUS UVP Protection Falling Threshold for Forward 4:1 Mode 0 = 12V 1 = 13V (default) | Hard-reset or REG_RST | | D[0] | VBUS_UVP21 | 1 | R/W | Setting Bit of VBUS UVP Protection Falling Threshold for Forward 2:1 Mode 0 = 6V 1 = 6.5V (default) | Hard-reset or REG_RST | **REG0x0D: VBAT_PROT Register [reset = 0x33]** | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |--------|----------------|---------|------|--|--------------------------| | D[7:5] | VBAT1_OVP[2:0] | 001 | R/W | VBAT1 OVP Protection Rising Threshold Setting Bits V _{BAT1_OVP_R} = 4.5V + VBAT1_OVP[2:0] × 100mV Offset: 4.5V Range: 4.5V (000) – 5.2V (111) Default: 4.6V (001) | Hard-reset or
REG_RST | | D[4] | VBAT1_OVP_DEG | 1 | R/W | VBAT1 OVP Protection Deglitch Time (t _{VBAT1_OVP_DEG}) Setting Bit 0 = 100ns 1 = 128µs (default) | Hard-reset or REG_RST | | D[3:1] | VBAT2_OVP[2:0] | 001 | R/W | VBAT2 OVP Protection Rising Threshold Setting Bits V _{BAT2_OVP_R} = 4.5V + VBAT2_OVP[2:0] × 100mV Offset: 4.5V Range: 4.5V (000) – 5.2V (111) Default: 4.6V (001) | Hard-reset or
REG_RST | | D[0] | VBAT2_OVP_DEG | 1 | R/W | VBAT2 OVP Protection Deglitch Time (t _{VBAT2_OVP_DEG}) Setting Bit 0 = 100ns 1 = 128µs (default) | Hard-reset or REG_RST | ### **REG0x0E: IBAT_PROT Register [reset = 0x44]** | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |--------|----------------|---------|------|--|--------------------------| | D[7:4] | IBAT_OCP[3:0] | 0100 | R/W | IBAT Bidirectional OCP Protection Threshold Setting Bits 0000 = 5A | Hard-reset or
REG_RST | | D[3:2] | IBAT_RSNS[1:0] | 01 | R/W | External IBAT Current Sense Resistor Setting Bits $00 = 0.5 m\Omega$ $01 = 1 m\Omega$ (default) $10 = 2 m\Omega$ $11 = Reserved$ | Hard-reset or
REG_RST | | D[1] | IBAT_RSNS_POS | 0 | R/W | External IBAT Current Sense Resistor Position Setting Bit 0 = Low-side (default) 1 = High-side | Hard-reset or REG_RST | | D[0] | Reserved | 0 | R | Reserved | N/A | REG0x0F: PULLDOWN_CTRL Register [reset = 0x80] | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |------|--------------|---------|------|---|--------------------------| | D[7] | IBAT_OCP_DEG | 1 | R/W | IBAT Bidirectional OCP Protection Deglitch Time (t _{IBAT_OCP_DEG}) Setting Bit 0 = 0.1ms 1 = 1ms (default) | Hard-reset or
REG_RST | | D[6] | VUSB_PDN_EN | 0 | R/WC | VUSB Pull-Down Resistor Enable Bit 0 = Pull-down disabled (default) 1 = Pull-down enabled. When enabled, the VUSB is pulled down by 0.5 k Ω R _{PDN_VUSB} for 512ms and then this bit is automatically reset to 0. | N/A | | D[5] | VWPC_PDN_EN | 0 | R/WC | VWPC Pull-Down Resistor Enable Bit 0 = Pull-down disabled (default) 1 = Pull-down enabled. When enabled, the VWPC is pulled down by 0.5 k Ω R _{PDN WWPC} for 512ms and then this bit is automatically reset to 0. | N/A | | D[4] | VBUS_PDN_EN | 0 | R/WC | VBUS Pull-Down Resistor Enable Bit 0 = Pull-down disabled (default) 1 = Pull-down enabled. When enabled, the VBUS is pulled down by $5.5k\Omega$ R _{PDN VBUS} for 512ms and then this bit is automatically reset to 0. | N/A | | D[3] | USBGATE_CTRL | 0 | R/W | USBGATE Control Bit 0 = USBGATE output low (default) 1 = USBGATE output high Only valid when both USBGATE_EN and USBGATE_MODE bits are set to 1. When USBGATE_EN or USBGATE_MODE bit is set to 0, USBGATE_CTRL bit is auto reset to 0. | Hard-reset or
REG_RST | | D[2] | WPCGATE_CTRL | 0 | R/W | WPCGATE Control Bit 0 = WPCGATE output low (default) 1 = WPCGATE output high Only valid when both WPCGATE_EN and WPCGATE_MODE bits are set to 1. When WPCGATE_EN or WPCGATE_MODE bit is set to 0, WPCGATE_CTRL bit is auto reset to 0. | Hard-reset or
REG_RST | | D[1] | USBGATE_STAT | 0 | R | Status Bit of USBGATE Driver This status bit indicates the real-time ON/OFF status of the USBGATE driver. 0 = USBGATE is turned off. 1 = USBGATE is turned on. | N/A | | D[0] | WPCGATE_STAT | 0 | R | Status Bit of WPCGATE Driver This status bit indicates the real-time ON/OFF status of the WPCGATE driver. 0 = WPCGATE is turned off. 1 = WPCGATE is turned on. | N/A | REG0x11: FLT_FLAG1 Register [reset = 0x00] | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |------|------------------|---------|------|---|------------| | D[7] | VUSB_OVP_FLAG | 0 | RC | VUSB OVP Fault Flag Bit 0 = No VUSB OVP fault 1 = VUSB OVP fault has occurred. It generates an interrupt on nINT pin if unmasked. After the VUSB OVP fault is cleared, a read on this bit will reset it to 0. | N/A | | D[6] | VUSB_PDN_FLAG | 0 | RC | VUSB Pull-Down Event Flag Bit 0 = No VUSB pull-down event 1 = VUSB pull-down event has occurred. It generates an interrupt on nINT pin if unmasked. After the VUSB pull-down event is complete, a read on this bit will reset it to 0. | Hard-reset | | D[5] | VWPC_OVP_FLAG | 0 | RC | VWPC OVP Fault Flag Bit 0 = No VWPC OVP fault 1 = VWPC OVP fault has occurred. It generates an interrupt on nINT pin if unmasked. After the VWPC OVP fault is cleared, a read on this bit will reset it to 0. | N/A | | D[4] | VWPC_PDN_FLAG | 0 | RC | VWPC Pull-Down Event Flag Bit 0 = No VWPC pull-down event 1 = VWPC pull-down event has occurred. It generates an interrupt on nINT pin if unmasked. After the VWPC pull-down event is complete, a read on this bit will reset it to 0. | Hard-reset | | D[3] | VBUS_OVP_FLAG | 0 | RC | VBUS OVP Fault Flag Bit 0 = No VBUS OVP fault 1 = VBUS OVP fault has occurred. It generates an interrupt on nINT pin if unmasked. After the VBUS OVP fault is cleared, a read on this bit will reset it to 0. Note: Including VBUS_OVP41, VBUS_OVP21 and VBUS_OVP11
protections. | N/A | | D[2] | VBUS_PDN_FLAG | 0 | RC | VBUS Pull-Down Event Flag Bit 0 = No VBUS pull-down event 1 = VBUS pull-down event has occurred. It generates an interrupt on nINT pin if unmasked. After the VBUS pull-down event is complete, a read on this bit will reset it to 0. | Hard-reset | | D[1] | VUSB_ABSENT_FLAG | 0 | RC | VUSB Absent Event Flag Bit 0 = No VUSB absent event 1 = VUSB absent event has occurred. It generates an interrupt on nINT pin if unmasked. After the VUSB is present, a read on this bit will reset it to 0. | N/A | | D[0] | VWPC_ABSENT_FLAG | 0 | RC | VWPC Absent Event Flag Bit 0 = No VWPC absent event 1 = VWPC absent event has occurred. It generates an interrupt on nINT pin if unmasked. After the VWPC is present, a read on this bit will reset it to 0. | N/A | REG0x12: FLT_MASK1 Register [reset = 0x00] | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |------|------------------|---------|------|---|--------------------------| | D[7] | VUSB_OVP_MASK | 0 | R/W | Mask VUSB OVP Fault Interrupt 0 = VUSB OVP fault interrupt can work (default) 1 = Mask VUSB OVP fault interrupt. VUSB_OVP_FLAG bit is set after the fault, but the interrupt signal is not generated. | Hard-reset or
REG_RST | | D[6] | VUSB_PDN_MASK | 0 | R/W | Mask VUSB Pull-Down Event Interrupt 0 = VUSB pull-down event interrupt can work (default) 1 = Mask VUSB pull-down event interrupt. VUSB_PDN_FLAG bit is set after the event, but the interrupt signal is not generated. | Hard-reset or
REG_RST | | D[5] | VWPC_OVP_MASK | 0 | R/W | Mask VWPC OVP Fault Interrupt 0 = VWPC OVP fault interrupt can work (default) 1 = Mask VWPC OVP fault interrupt. VWPC_OVP_FLAG bit is set after the fault, but the interrupt signal is not generated. | Hard-reset or
REG_RST | | D[4] | VWPC_PDN_MASK | 0 | R/W | Mask VWPC Pull-Down Event Interrupt 0 = VWPC pull-down event interrupt can work (default) 1 = Mask VWPC pull-down event interrupt. VWPC_PDN_FLAG bit is set after the event, but the interrupt signal is not generated. | Hard-reset or
REG_RST | | D[3] | VBUS_OVP_MASK | 0 | R/W | Mask VBUS OVP Fault Interrupt 0 = VBUS OVP fault interrupt can work (default) 1 = Mask VBUS OVP fault interrupt. VBUS_OVP_FLAG bit is set after the fault, but the interrupt signal is not generated. | Hard-reset or
REG_RST | | D[2] | VBUS_PDN_MASK | 0 | R/W | Mask VBUS Pull-Down Event Interrupt 0 = VBUS pull-down event interrupt can work (default) 1 = Mask VBUS pull-down event interrupt. VBUS_PDN_FLAG bit is set after the event, but the interrupt signal is not generated. | Hard-reset or
REG_RST | | D[1] | VUSB_ABSENT_MASK | 0 | R/W | Mask VUSB Absent Event Interrupt 0 = VUSB Absent event interrupt can work (default) 1 = Mask VUSB Absent event interrupt. VUSB_ABSENT_FLAG bit is set after the event, but the interrupt signal is not generated. | Hard-reset or
REG_RST | | D[0] | VWPC_ABSENT_MASK | 0 | R/W | Mask VWPC Absent Event Interrupt 0 = VWPC Absent event interrupt can work (default) 1 = Mask VWPC Absent event interrupt. VWPC_ABSENT_FLAG bit is set after the event, but the interrupt signal is not generated. | Hard-reset or
REG_RST | REG0x13: FLT_FLAG2 Register [reset = 0x00] | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |------|------------------------|---------|------|--|------------| | D[7] | VUSB2VOUT_OVP_
FLAG | 0 | RC | VUSB2VOUT OVP Fault Flag Bit for Forward Mode 0 = No VUSB2VOUT OVP fault 1 = VUSB2VOUT OVP fault has occurred. It generates an interrupt on nINT pin if unmasked. Reading this bit will reset it to 0. | Hard-reset | | D[6] | VWPC2VOUT_OVP_
FLAG | 0 | RC | VWPC2VOUT OVP Fault Flag Bit for Forward Mode 0 = No VWPC2VOUT OVP fault 1 = VWPC2VOUT OVP fault has occurred. It generates an interrupt on nINT pin if unmasked. Reading this bit will reset it to 0. | Hard-reset | | D[5] | PMID2VOUT_UVP_
FLAG | 0 | RC | PMID2VOUT UVP Fault Flag Bit 0 = No PMID2VOUT UVP fault 1 = PMID2VOUT UVP fault has occurred. It generates an interrupt on nINT pin if unmasked. Reading this bit will reset it to 0. | Hard-reset | | D[4] | PMID2VOUT_OVP_
FLAG | 0 | RC | PMID2VOUT OVP Fault Flag Bit 0 = No PMID2VOUT OVP fault 1 = PMID2VOUT OVP fault has occurred. It generates an interrupt on nINT pin if unmasked. Reading this bit will reset it to 0. | Hard-reset | | D[3] | IBUS_OCP41_FLAG | 0 | RC | IBUS OCP Fault Flag Bit for Forward 4:1 Mode 0 = No IBUS OCP fault 1 = IBUS OCP fault has occurred. It generates an interrupt on nINT pin if unmasked. Reading this bit will reset it to 0. | Hard-reset | | D[2] | IBUS_OCP21_FLAG | 0 | RC | IBUS OCP Fault Flag Bit for Forward 2:1 Mode and Forward 1:1 Mode 0 = No IBUS OCP fault 1 = IBUS OCP fault has occurred. It generates an interrupt on nINT pin if unmasked. Reading this bit will reset it to 0. | Hard-reset | | D[1] | IBUS_OCP14_FLAG | 0 | RC | IBUS OCP Fault Flag Bit for Reverse 1:4 Mode 0 = No IBUS OCP fault 1 = IBUS OCP fault has occurred. It generates an interrupt on nINT pin if unmasked. Reading this bit will reset it to 0. | Hard-reset | | D[0] | IBUS_OCP12_FLAG | 0 | RC | IBUS OCP Fault Flag Bit for Reverse 1:2 Mode and Reverse 1:1 Mode 0 = No IBUS OCP fault 1 = IBUS OCP fault has occurred. It generates an interrupt on nINT pin if unmasked. Reading this bit will reset it to 0. | Hard-reset | REG0x14: FLT_MASK2 Register [reset = 0x00] | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |------|------------------------|---------|------|--|--------------------------| | D[7] | VUSB2VOUT_OVP_
MASK | 0 | R/W | Mask VUSB2VOUT OVP Fault Interrupt for Forward Mode 0 = VUSB2VOUT OVP fault interrupt can work (default) 1 = Mask VUSB2VOUT OVP fault interrupt. VUSB2VOUT_OVP_FLAG bit is set after the fault, but the interrupt signal is not generated. | Hard-reset or
REG_RST | | D[6] | VWPC2VOUT_OVP_
MASK | 0 | R/W | Mask VWPC2VOUT OVP Fault Interrupt for Forward Mode 0 = VWPC2VOUT OVP fault interrupt can work (default) 1 = Mask VWPC2VOUT OVP fault interrupt. VWPC2VOUT_OVP_FLAG bit is set after the fault, but the interrupt signal is not generated. | Hard-reset or
REG_RST | | D[5] | PMID2VOUT_UVP_
MASK | 0 | R/W | Mask PMID2VOUT UVP Fault Interrupt 0 = PMID2VOUT UVP fault interrupt can work (default) 1 = Mask PMID2VOUT UVP fault interrupt. PMID2VOUT_UVP_FLAG bit is set after the fault, but the interrupt signal is not generated. | Hard-reset or
REG_RST | | D[4] | PMID2VOUT_OVP_
MASK | 0 | R/W | Mask PMID2VOUT OVP Fault Interrupt 0 = PMID2VOUT OVP fault interrupt can work (default) 1 = Mask PMID2VOUT OVP fault interrupt. PMID2VOUT_OVP_FLAG bit is set after the fault, but the interrupt signal is not generated. | Hard-reset or
REG_RST | | D[3] | IBUS_OCP41_MASK | 0 | R/W | Mask IBUS OCP Fault Interrupt for Forward 4:1 Mode 0 = IBUS OCP fault interrupt can work (default) 1 = Mask IBUS OCP fault interrupt. IBUS_OCP41_FLAG bit is set after the fault, but the interrupt signal is not generated. | Hard-reset or
REG_RST | | D[2] | IBUS_OCP21_MASK | 0 | R/W | Mask IBUS OCP Fault Interrupt for Forward 2:1 Mode and 1:1 Mode 0 = IBUS OCP fault interrupt can work (default) 1 = Mask IBUS OCP fault interrupt. IBUS_OCP21_FLAG bit is set after the fault, but the interrupt signal is not generated. | Hard-reset or
REG_RST | | D[1] | IBUS_OCP14_MASK | 0 | R/W | Mask IBUS OCP Fault Interrupt for Reverse 1:4 Mode 0 = IBUS OCP fault interrupt can work (default) 1 = Mask IBUS OCP fault interrupt. IBUS_OCP14_FLAG bit is set after the fault, but the interrupt signal is not generated. | Hard-reset or
REG_RST | | D[0] | IBUS_OCP12_MASK | 0 | R/W | Mask IBUS OCP Fault Interrupt for Reverse 1:2 Mode and 1:1 Mode 0 = IBUS OCP fault interrupt can work (default) 1 = Mask IBUS OCP fault interrupt. IBUS_OCP12_FLAG bit is set after the fault, but the interrupt signal is not generated. | Hard-reset or
REG_RST | REG0x15: FLT_FLAG3 Register [reset = 0x00] | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |--------|----------------------------|---------|------|---|------------| | D[7] | VBAT1_OVP_FLAG | 0 | RC | VBAT1 OVP Fault Flag 0 = No VBAT1 OVP fault 1 = VBAT1 OVP fault has occurred. It generates an interrupt on nINT pin if unmasked. After the VBAT1 OVP fault is cleared, reading this bit will reset it to 0. | N/A | | D[6] | VBAT2_OVP_FLAG | 0 | RC | VBAT2 OVP Fault Flag 0 = No VBAT2 OVP fault 1 = VBAT2 OVP fault has occurred. It generates an interrupt on nINT pin if unmasked. After the VBAT2 OVP fault is cleared, reading this bit will reset it to 0. | N/A | | D[5] | IBAT_OCP_FLAG | 0 | RC | IBAT Bidirectional OCP Fault Flag 0 = No IBAT OCP fault 1 = IBAT OCP fault has occurred. It generates an interrupt on nINT pin if unmasked. Reading this bit will reset it to 0. | Hard-reset | | D[4] | OVPFET_SS_
TIMEOUT_FLAG | 0 | RC | External OVPFETs (Q_{USB}/Q_{WPC}) Soft-start Timeout Fault Flag 0 = No OVPFET soft-start timeout fault 1 = OVPFET soft-start timeout fault has occurred. It generates an interrupt on nINT pin if unmasked. Reading this bit will be reset it to 0 . | N/A |
| D[3:2] | Reserved | 00 | R | Reserved | N/A | | D[1] | TDIE_OTP_FLAG | 0 | RC | TDIE Over-Temperature Fault Flag 0 = No TDIE over-temperature fault 1 = TDIE over-temperature fault has occurred. It generates an interrupt on nINT pin if unmasked. After the TDIE over-temperature fault is cleared, reading this bit will reset it to 0. | N/A | | D[0] | VOUT_OVP_FLAG | 0 | RC | VOUT OVP Fault Flag 0 = No VOUT OVP fault 1 = VOUT OVP fault has occurred. It generates an interrupt on nINT pin if unmasked. After the VOUT OVP fault is cleared, reading this bit will reset it to 0. | N/A | REG0x16: FLT_MASK3 Register [reset = 0x00] | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |--------|----------------------------|---------|------|---|--------------------------| | D[7] | VBAT1_OVP_MASK | 0 | R/W | Mask VBAT1 OVP Fault Interrupt 0 = VBAT1 OVP fault interrupt can work (default) 1 = Mask VBAT1 OVP fault interrupt. VBAT1_OVP_FLAG bit is set after the fault, but the interrupt signal is not generated. | Hard-reset or
REG_RST | | D[6] | VBAT2_OVP_MASK | 0 | R/W | Mask VBAT2 OVP Fault Interrupt 0 = VBAT2 OVP fault interrupt can work (default) 1 = Mask VBAT2 OVP fault interrupt. VBAT2_OVP_FLAG bit is set after the fault, but the interrupt signal is not generated. | Hard-reset or
REG_RST | | D[5] | IBAT_OCP_MASK | 0 | R/W | Mask IBAT Bidirectional OCP Fault Interrupt 0 = IBAT OCP fault interrupt can work (default) 1 = Mask IBAT OCP fault interrupt. IBAT_OCP_FLAG bit is set after the fault, but the interrupt signal is not generated. | Hard-reset or
REG_RST | | D[4] | OVPFET_SS_
TIMEOUT_MASK | 0 | R/W | Mask OVPFETs (Q _{USB} /Q _{WPC}) Soft-start Timeout Fault Interrupt 0 = OVPFET soft-start timeout fault interrupt can work (default) 1 = Mask OVPFET soft-start timeout fault interrupt. OVPFET_SS_TIMEOUT_FLAG bit is set after the fault, but the interrupt signal is not generated. | Hard-reset or
REG_RST | | D[3:2] | Reserved | 00 | R | Reserved | N/A | | D[1] | TDIE_OTP_MASK | 0 | R/W | Mask TDIE OTP Fault Interrupt 0 = TDIE OTP fault interrupt can work (default) 1 = Mask TDIE OTP fault interrupt. TDIE_OTP_FLAG bit is set after the fault, but the interrupt signal is not generated. | Hard-reset or
REG_RST | | D[0] | VOUT_OVP_MASK | 0 | R/W | Mask VOUT OVP Fault Interrupt 0 = VOUT OVP fault interrupt can work (default) 1 = Mask VOUT OVP fault interrupt. VOUT_OVP_FLAG bit is set after the fault, but the interrupt signal is not generated. | Hard-reset or
REG_RST | REG0x17: FLT_FLAG4 Register [reset = 0x00] | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |------|------------------------|---------|------|---|------------| | D[7] | Reserved | 0 | R | Reserved | N/A | | D[6] | PEAK_OCP_QSW_
FLAG | 0 | RC | Switching FETs Bidirectional Peak OCP Fault Flag Bit 0 = No switching FETs peak OCP fault 1 = Switching FETs peak OCP fault has occurred. It generates an interrupt on nINT pin if unmasked. Reading this bit will reset it to 0. | Hard-reset | | D[5] | IBUS_UCP_FALL_
FLAG | 0 | RC | IBUS UCP Falling Fault Flag Bit 0 = No IBUS UCP falling fault 1 = IBUS UCP falling fault has occurred. It generates an interrupt on nINT pin if unmasked. Reading this bit will reset it to 0. | Hard-reset | | D[4] | IBUS_RCP_FLAG | 0 | RC | IBUS RCP Fault Flag Bit for Forward Mode 0 = No IBUS RCP fault 1 = IBUS RCP fault has occurred. It generates an interrupt on nINT pin if unmasked. Reading this bit will reset it to 0. | Hard-reset | | D[3] | VBUS_UVP41_FLAG | 0 | RC | VBUS UVP Fault Flag Bit for Forward 4:1 Mode 0 = No VBUS UVP fault 1 = VBUS UVP fault has occurred. It generates an interrupt on nINT pin if unmasked. After the VBUS UVP fault is cleared, reading this bit will reset it to 0. | Hard-reset | | D[2] | VBUS_UVP21_FLAG | 0 | RC | VBUS UVP Fault Flag Bit for Forward 2:1 Mode 0 = No VBUS UVP fault 1 = VBUS UVP fault has occurred. It generates an interrupt on nINT pin if unmasked. After the VBUS UVP fault is cleared, reading this bit will reset it to 0. | Hard-reset | | D[1] | VUSB_INSERT_FLAG | 0 | RC | VUSB Insert Event Flag Bit 0 = No VUSB insert event 1 = VUSB insert event has occurred. It generates an interrupt on nINT pin if unmasked. After the VUSB is removed, reading this bit will reset it to 0. | N/A | | D[0] | VWPC_INSERT_FLAG | 0 | RC | VWPC Insert Event Flag Bit 0 = No VWPC insert event 1 = VWPC insert event has occurred. It generates an interrupt on nINT pin if unmasked. After the VWPC is removed, reading this bit will reset it to 0. | N/A | REG0x18: FLT_MASK4 Register [reset = 0x00] | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |------|------------------------|---------|------|--|--------------------------| | D[7] | Reserved | 0 | R | Reserved | N/A | | D[6] | PEAK_OCP_QSW_
MASK | 0 | R/W | Mask Switching FETs Peak OCP Fault Interrupt 0 = Switching FETs peak OCP fault interrupt can work (default) 1 = Mask switching FETs peak OCP fault interrupt. PEAK_OCP_QSW_FLAG bit is set after the fault, but the interrupt signal is not generated. | Hard-reset or
REG_RST | | D[5] | IBUS_UCP_FALL_
MASK | 0 | R/W | Mask IBUS UCP Falling Fault Interrupt 0 = IBUS UCP falling fault interrupt can work (default) 1 = Mask IBUS UCP falling fault interrupt. IBUS_UCP_FALL_FLAG bit is set after the fault, but the interrupt signal is not generated. | Hard-reset or
REG_RST | | D[4] | IBUS_RCP_MASK | 0 | R/W | Mask IBUS RCP Fault Interrupt for Forward Mode 0 = IBUS RCP fault interrupt can work (default) 1 = Mask IBUS RCP fault interrupt. IBUS_RCP_FLAG bit is set after the fault, but the interrupt signal is not generated. | Hard-reset or
REG_RST | | D[3] | VBUS_UVP41_MASK | 0 | R/W | Mask VBUS UVP Fault Interrupt for Forward 4:1 Mode 0 = VBUS UVP fault interrupt can work (default) 1 = Mask VBUS UVP fault interrupt. VBUS_UVP41_FLAG bit is set after the fault, but the interrupt signal is not generated. | Hard-reset or
REG_RST | | D[2] | VBUS_UVP21_MASK | 0 | R/W | Mask VBUS UVP Fault Interrupt for Forward 2:1 Mode 0 = VBUS UVP fault interrupt can work (default) 1 = Mask VBUS UVP fault interrupt. VBUS_UVP21_FLAG bit is set after the fault, but the interrupt signal is not generated. | Hard-reset or
REG_RST | | D[1] | VUSB_INSERT_MASK | 0 | R/W | Mask VUSB Insert Event Interrupt 0 = VUSB insert event interrupt can work (default) 1 = Mask VUSB insert event interrupt. VUSB_INSERT_FLAG bit is set after the event, but the interrupt signal is not generated. | Hard-reset or
REG_RST | | D[0] | VWPC_INSERT_MASK | 0 | R/W | Mask VWPC Insert Event Interrupt 0 = VWPC insert event interrupt can work (default) 1 = Mask VWPC insert event interrupt. VWPC_INSERT_FLAG bit is set after the event, but the interrupt signal is not generated. | Hard-reset or
REG_RST | REG0x19: FLT_FLAG5 Register [reset = 0x00] | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |------|---------------------------|---------|------|---|------------| | D[7] | VBUS_PRESENT_
FLAG | 0 | RC | VBUS Present Event Flag Bit 0 = No VBUS present event 1 = VBUS present event has occurred. It generates an interrupt on nINT pin if unmasked. After the VBUS is absent, reading this bit will reset it to 0. | N/A | | D[6] | VBAT_INSERT_FLAG | 0 | RC | VBAT Insert Event Flag Bit
0 = No VBAT insert event
1 = VBAT insert event has occurred. It generates an interrupt on nINT
pin if unmasked. After the battery is absent, reading this bit will reset it
to 0. | N/A | | D[5] | WD_TIMEOUT_FLAG | 0 | RC | Watchdog Timeout Fault Flag Bit 0 = No watchdog timeout fault 1 = Watchdog timeout fault has occurred. It generates an interrupt on nINT pin if unmasked. Reading this bit will reset it to 0. | Hard-reset | | D[4] | VBUS_ABSENT_FLAG | 0 | RC | VBUS Absent Event Flag Bit 0 = No VBUS absent event 1 = VBUS absent event has occurred. It generates an interrupt on nINT pin if unmasked. After the VBUS is present, a read on this bit will reset it to 0. | N/A | | D[3] | IBUS_UCP_TIMEOUT
_FLAG | 0 | RC | IBUS UCP Timeout Fault Flag Bit 0 = No IBUS UCP timeout fault 1 = IBUS UCP timeout fault has occurred. It generates an interrupt on nINT pin if unmasked. Reading this bit will be reset it to 0. | Hard-reset | | D[2] | ADC_DONE_FLAG | 0 | RC | ADC Conversion Complete Event Flag Bit In 1-shot conversion mode, this bit is set to 1 after ADC conversion of all enabled channels is complete. 0 = Normal 1 = ADC conversion complete. It generates an interrupt on nINT pin if unmasked. Read this bit to reset it to 0. | Hard-reset | | D[1] | PIN_DIAG_FLAG | 0 | RC | Pin Diagnosis Fail Fault Flag Bit
0 = Normal
1 = C _{FLY} short/open or VOUT pin short fault has occurred. It generates
an interrupt on nINT pin. Reading this bit will reset it to 0. | N/A | | D[0] | VBAT_BRN_OUT_
FLAG | 0 | RC | VBAT Brown-Out Fault Flag Bit for Reverse Mode 0 = No VBAT brown-out fault 1 = VBAT brown-out fault has occurred. It
generates an interrupt on nINT pin if unmasked. After V_{VOUT} rises above $V_{BAT_BRN_IN}$, a read on this bit will reset it to 0. | N/A | REG0x1A: FLT_MASK5 Register [reset = 0x00] | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |------|---------------------------|---------|------|--|--------------------------| | D[7] | VBUS_PRESENT_
MASK | 0 | R/W | Mask VBUS Present Event Interrupt 0 = VBUS present event interrupt can work (default) 1 = Mask VBUS present event interrupt. VBUS_PRESENT_FLAG bit is set after the event, but the interrupt signal is not generated. | Hard-reset or
REG_RST | | D[6] | VBAT_INSERT_MASK | 0 | R/W | Mask VBAT Insert Event Interrupt 0 = VBAT insert event interrupt can work (default) 1 = Mask VBAT insert event interrupt. VBAT_INSERT_FLAG bit is set after the event, but the interrupt signal is not generated. | Hard-reset or
REG_RST | | D[5] | WD_TIMEOUT_MASK | 0 | R/W | Mask Watchdog Timeout Fault Interrupt 0 = Watchdog timeout fault interrupt can work (default) 1 = Mask watchdog timeout fault interrupt. WD_TIMEOUT_FLAG bit is set after the fault, but the interrupt signal is not generated. | Hard-reset or
REG_RST | | D[4] | VBUS_ABSENT_
MASK | 0 | R/W | Mask VBUS Absent Event Interrupt 0 = VBUS Absent event interrupt can work (default) 1 = Mask VBUS Absent event interrupt. VBUS_ABSENT_FLAG bit is set after the event, but the interrupt signal is not generated. | Hard-reset or
REG_RST | | D[3] | IBUS_UCP_TIMEOUT
_MASK | 0 | R/W | Mask IBUS UCP Timeout Fault Interrupt 0 = IBUS UCP timeout fault interrupt can work (default) 1 = Mask IBUS UCP timeout fault interrupt. IBUS_UCP_TIMEOUT_ FLAG bit is set after the fault, but the interrupt signal is not generated. | Hard-reset or
REG_RST | | D[2] | ADC_DONE_MASK | 0 | R/W | Mask ADC Complete Event Interrupt 0 = ADC_DONE event interrupt can work (default) 1 = Mask ADC_DONE event interrupt. ADC_DONE_FLAG bit is set after the event, but the interrupt signal is not generated. | Hard-reset or
REG_RST | | D[1] | PIN_DIAG_MASK | 0 | R/W | Mask Pin Diagnosis Fail Fault Interrupt 0 = Pin diagnosis fail fault interrupt can work (default) 1 = Mask pin diagnosis fail fault interrupt. PIN_DIAG_FLAG bit is set after the fault, but the interrupt signal is not generated. | Hard-reset or
REG_RST | | D[0] | VBAT_BRN_OUT_
MASK | 0 | R/W | Mask VBAT Brown-Out Fault Interrupt for Reverse Mode 0 = VBAT brown-out fault interrupt can work (default) 1 = Mask VBAT brown-out fault interrupt. VBAT_BRN_OUT_FLAG bit is set after the fault, but the interrupt signal is not generated. | Hard-reset or
REG_RST | REG0x1B: FLT_FLAG6 Register [reset = 0x00] | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |------|-----------------------|---------|------|---|--------------------------| | D[7] | VUSBOVP_ALM_
FLAG | 0 | RC | VUSB OVP Alarm Flag Bit for Forward Mode 0 = No VUSB OVP alarm 1 = VUSB OVP alarm has occurred. It generates an interrupt on nINT pin if unmasked. After the VUSB OVP alarm is cleared, reading this bit will reset it to 0. | Hard-reset | | D[6] | VWPCOVP_ALM_
FLAG | 0 | RC | VWPC OVP Alarm Flag for Forward Mode 0 = No VWPC OVP alarm 1 = VWPC OVP alarm has occurred. It generates an interrupt on nINT pin if unmasked. After the VWPC OVP alarm is cleared, reading this bit will reset it to 0. | Hard-reset | | D[5] | TDIEOTP_ALM_FLAG | 0 | RC | TDIE OTP Alarm Flag Bit 0 = No TDIE OTP alarm 1 = TDIE OTP alarm has occurred. It generates an interrupt on nINT pin if unmasked. After the TDIE OTP alarm is cleared, reading this bit will reset it to 0. | Hard-reset | | D[4] | VBUS_LO_FLAG | 0 | RC | VBUS Low Voltage Fault Flag Bit Only valid in forward mode before switching start. It is set to 1 if (V _{VBUS} /n - V _{VOUT}) is below - 0.01V _{VOUT} . (n = 1, 2, or 4, depending on the operation mode) 0 = No VBUS low voltage fault 1 = Device in VBUS low voltage fault has occurred. It generates an interrupt on nINT pin. After the VBUS low voltage fault is cleared, reading this bit will reset it to 0. | Hard-reset or
REG_RST | | D[3] | VBUS_HI_FLAG | 0 | RC | VBUS High Voltage Fault Flag Bit Only valid in forward mode before switching start. It is set to 1 if $(V_{VBUS}/n - V_{VOUT})$ is above $0.15V_{VOUT}$. $(n = 1, 2, \text{ or } 4, \text{ depending on the operation mode})$ $0 = \text{No VBUS high voltage fault}$ $1 = Device in VBUS high voltage fault has occurred. It generates an interrupt on nINT pin. After the VBUS high voltage fault is cleared, reading this bit will reset it to 0.$ | Hard-reset or
REG_RST | | D[2] | VBAT1OVP_ALM_
FLAG | 0 | RC | VBAT1 OVP Alarm Flag Bit 0 = No VBAT1 OVP alarm 1 = VBAT1 OVP alarm has occurred. It generates an interrupt on nINT pin if unmasked. After the VBAT1 OVP alarm is cleared, reading this bit will reset it to 0. | Hard-reset | | D[1] | VBAT2OVP_ALM_
FLAG | 0 | RC | VBAT2 OVP Alarm Flag Bit
0 = No VBAT2 OVP alarm
1 = VBAT2 OVP alarm has occurred. It generates an interrupt on
nINT pin if unmasked. After the VBAT2 OVP alarm is cleared, reading
this bit will reset it to 0. | Hard-reset | | D[0] | IBATOCP_ALM_FLAG | 0 | RC | IBAT OCP Alarm Flag Bit for Forward Mode 0 = No IBAT OCP alarm 1 = IBAT OCP alarm has occurred. It generates an interrupt on nINT pin if unmasked. After the IBAT OCP alarm is cleared, reading this bit will reset it to 0. | Hard-reset | REG0x1C: FLT_MASK6 Register [reset = 0x00] | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |------|-----------------------|---------|------|---|--------------------------| | D[7] | VUSBOVP_ALM_MASK | 0 | R/W | Mask VUSB OVP Alarm Interrupt 0 = VUSB OVP alarm interrupt can work (default) 1 = Mask VUSB OVP alarm interrupt. VUSBOVP_ALM_FLAG bit is set after the event, but the interrupt signal is not generated. | Hard-reset or
REG_RST | | D[6] | VWPCOVP_ALM_
MASK | 0 | R/W | Mask VWPC OVP Alarm Interrupt 0 = VWPC OVP alarm interrupt can work (default) 1 = Mask VWPC OVP alarm interrupt. VWPCOVP_ALM_FLAG bit is set after the event, but the interrupt signal is not generated. | Hard-reset or
REG_RST | | D[5] | TDIEOTP_ALM_MASK | 0 | R/W | Mask TDIE OTP Alarm Interrupt 0 = TDIE OTP alarm interrupt can work (default) 1 = Mask TDIE OTP alarm interrupt. TDIEOTP_ALM_FLAG bit is set after the event, but the interrupt signal is not generated. | Hard-reset or
REG_RST | | D[4] | VBUS_LO_MASK | 0 | R/W | Mask VBUS Low Voltage Fault Interrupt 0 = VBUS low voltage fault interrupt can work (default) 1 = Mask VBUS low voltage fault interrupt. VBUS_LO_FLAG bit is set after the fault, but the interrupt signal is not generated. | Hard-reset or
REG_RST | | D[3] | VBUS_HI_MASK | 0 | R/W | Mask VBUS High Voltage Fault Interrupt 0 = VBUS high voltage fault interrupt can work (default) 1 = Mask VBUS high voltage fault interrupt. VBUS_HI_FLAG bit is set after the fault, but the interrupt signal is not generated. | Hard-reset or
REG_RST | | D[2] | VBAT10VP_ALM_
MASK | 0 | R/W | Mask VBAT1 OVP Alarm Interrupt 0 = VBAT1 OVP alarm interrupt can work (default) 1 = Mask VBAT1 OVP alarm interrupt. VBAT1OVP_ALM_FLAG bit is set after the event, but the interrupt signal is not generated. | Hard-reset or
REG_RST | | D[1] | VBAT2OVP_ALM_
MASK | 0 | R/W | Mask VBAT2 OVP Alarm Interrupt 0 = VBAT2 OVP alarm interrupt can work (default) 1 = Mask VBAT2 OVP alarm interrupt. VBAT2OVP_ALM_FLAG bit is set after the event, but the interrupt signal is not generated. | Hard-reset or
REG_RST | | D[0] | IBATOCP_ALM_MASK | 0 | R/W | Mask IBAT OCP Alarm Interrupt for Forward Mode 0 = IBAT OCP alarm interrupt can work (default) 1 = Mask IBAT OCP alarm interrupt. IBATOCP_ALM_FLAG bit is set after the event, but the interrupt signal is not generated. | Hard-reset or
REG_RST | REG0x1D: VBATOVP_ALM Register [reset = 0x00] | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |--------|-------------------|---------|------|---|--------------------------| | D[7:6] | VBAT1OVP_ALM[1:0] | 00 | R/W | VBAT1 OVP Alarm Rising Threshold Setting Bits V _{BAT1OVP_ALM_R} = V _{BAT1_OVP_R} - (VBAT1OVP_ALM[1:0] + 1) × 50mV 00 = V _{BAT1_OVP_R} - 50mV (default) 01 = V _{BAT1_OVP_R} - 100mV 10 = V _{BAT1_OVP_R} - 150mV 11 = V _{BAT1_OVP_R} - 200mV | Hard-reset or
REG_RST | | D[5:4] | VBAT2OVP_ALM[1:0] | 00 | R/W | VBAT2 OVP Alarm Rising Threshold Setting Bits V _{BAT2OVP_ALM_R} = V _{BAT2_OVP_R} - (VBAT2OVP_ALM[1:0] + 1) × 50mV 00 = V _{BAT2_OVP_R} - 50mV (default) 01 = V _{BAT2_OVP_R} - 100mV 10 = V _{BAT2_OVP_R} - 150mV 11 = V _{BAT2_OVP_R} - 200mV | Hard-reset or
REG_RST | | D[3:2] | IBATOCP_ALM[1:0] | 00 | R/W | IBAT OCP Alarm Rising Threshold Setting Bits for Forward Mode $I_{BATOCP_ALM_R} = I_{BAT_OCP} - 200mA - IBATOCP_ALM[1:0] \times 100mA$ $00
= I_{BAT_OCP} - 200mA \text{ (default)}$ $01 = I_{BAT_OCP} - 300mA$ $10 = I_{BAT_OCP} - 400mA$ $11 = I_{BAT_OCP} - 500mA$ | Hard-reset or
REG_RST | | D[1:0] | Reserved | 00 | R | Reserved | N/A | ## REG0x20: ADC_CTRL1 Register [reset = 0x00] | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |--------|--------------|---------|------|--|------------------------------------| | D[7] | ADC_EN | 0 | R/W | ADC Conversion Enable Bit 0 = Disabled (default) 1 = Enabled Note: In 1-shot mode when the selected channel conversions are complete, the ADC_EN bit is automatically reset to 0. All channel conversions can be enabled even when the device is not during switching. | Hard-reset or
REG_RST or
WDT | | D[6] | ADC_RATE | 0 | R/W | ADC Conversion Mode Control Bit 0 = Continuous conversion (default) 1 = 1-shot conversion | Hard-reset or REG_RST | | D[5] | VBUS_ADC_DIS | 0 | R/W | VBUS ADC Control Bit 0 = Enable conversion (default) 1 = Disable conversion | Hard-reset or REG_RST | | D[4] | VUSB_ADC_DIS | 0 | R/W | VUSB ADC Control Bit 0 = Enable conversion (default) 1 = Disable conversion | Hard-reset or REG_RST | | D[3] | VWPC_ADC_DIS | 0 | R/W | VWPC ADC Control Bit 0 = Enable conversion (default) 1 = Disable conversion | Hard-reset or REG_RST | | D[2] | IBUS_ADC_DIS | 0 | R/W | IBUS ADC Control Bit 0 = Enable conversion (default) 1 = Disable conversion | Hard-reset or REG_RST | | D[1:0] | Reserved | 00 | R | Reserved | N/A | ## REG0x21: ADC_CTRL2 Register [reset = 0x00] | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |--------|---------------|---------|------|--|--------------------------| | D[7] | VBAT1_ADC_DIS | 0 | R/W | VBAT1 ADC Control Bit
0 = Enable conversion (default)
1 = Disable conversion | Hard-reset or REG_RST | | D[6] | VBAT2_ADC_DIS | 0 | R/W | VBAT2 ADC Control Bit
0 = Enable conversion (default)
1 = Disable conversion | Hard-reset or REG_RST | | D[5] | VOUT_ADC_DIS | 0 | R/W | VOUT ADC Control Bit 0 = Enable conversion (default) 1 = Disable conversion | Hard-reset or REG_RST | | D[4] | IBAT_ADC_DIS | 0 | R/W | IBAT ADC Control Bit 0 = Enable conversion (default) 1 = Disable conversion | Hard-reset or REG_RST | | D[3] | TDIE_ADC_DIS | 0 | R/W | TDIE ADC Control Bit 0 = Enable conversion (default) 1 = Disable conversion | Hard-reset or REG_RST | | D[2] | Reserved | 0 | R | Reserved | N/A | | D[1:0] | ADC_AVG[1:0] | 00 | R/W | Average Times of ADC Sampling 00 = 1 time (default) 01 = 2 times 10 = 4 times 11 = 8 times | Hard-reset or
REG_RST | ### REG0x22: VBUS_ADC1 Register [reset = 0x00] | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |--------|----------------|---------|------|---|-----------------------| | D[7:4] | Reserved | 0000 | R | Reserved | N/A | | D[3:0] | VBUS_ADC[11:8] | 0000 | R | Higher 4 bits of the 12-bit ADC VBUS Data (6mV resolution)
MSB<3:0>: 12288mV, 6144mV, 3072mV, 1536mV | Hard-reset or REG RST | ### **REG0x23: VBUS_ADC0 Register [reset = 0x00]** | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |--------|---------------|-----------|------|--|-----------------------| | D[7:0] | VBUS_ADC[7:0] | 0000 0000 | | Low Byte of the 12-bit ADC VBUS Data (6mV resolution) LSB<7:0>: 768mV, 384mV, 192mV, 96mV, 48mV, 24mV, 12mV, 6mV | Hard-reset or REG_RST | ### REG0x24: VUSB_ADC1 Register [reset = 0x00] | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |--------|----------------|---------|------|--|-----------------------| | D[7:4] | Reserved | 0000 | R | Reserved | N/A | | D[3:0] | VUSB_ADC[11:8] | 0000 | R | Higher 4 bits of the 12-bit ADC VUSB Data (6mV resolution) MSB<3:0>: 12288mV, 6144mV, 3072mV, 1536mV | Hard-reset or REG_RST | ### REG0x25: VUSB_ADC0 Register [reset = 0x00] | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |--------|---------------|-----------|------|--|-----------------------| | D[7:0] | VUSB_ADC[7:0] | 0000 0000 | | Low Byte of the 12-bit ADC VUSB Data (6mV resolution) LSB<7:0>: 768mV, 384mV, 192mV, 96mV, 48mV, 24mV, 12mV, 6mV | Hard-reset or REG_RST | ### REG0x26: VWPC_ADC1 Register [reset = 0x00] | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |--------|----------------|---------|------|--|-----------------------| | D[7:4] | Reserved | 0000 | R | Reserved | N/A | | D[3:0] | VWPC_ADC[11:8] | 0000 | R | Higher 4 bits of the 12-bit ADC VWPC Data (6mV resolution) MSB<3:0>: 12288mV, 6144mV, 3072mV, 1536mV | Hard-reset or REG_RST | ### REG0x27: VWPC_ADC0 Register [reset = 0x00] | BI | TS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |-----|------|---------------|-----------|------|--|--------------------------| | D[7 | 7:0] | VWPC_ADC[7:0] | 0000 0000 | | Low Byte of the 12-bit ADC VWPC Data (6mV resolution) LSB<7:0>: 768mV, 384mV, 192mV, 96mV, 48mV, 24mV, 12mV, 6mV | Hard-reset or
REG_RST | ### **REG0x28: IBUS_ADC1 Register [reset = 0x00]** | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |--------|-----------------------------|---------|------|---|--------------------------| | D[7:5] | Reserved | 000 | R | Reserved | N/A | | D[4] | IBUS_ADC[12] ⁽¹⁾ | 0 | R | Polarity of the 12-bit ADC IBUS Data 0 = Positive (Forward Charging) 1 = Negative (Reverse Discharging) | Hard-reset or
REG_RST | | D[3:0] | IBUS_ADC[11:8] (1) | 0000 | R | Higher 4 bits of the 12-bit ADC IBUS Data (2mA resolution) MSB<3:0>: 4096mA, 2048mA, 1024mA, 512mA | Hard-reset or
REG RST | ## REG0x29: IBUS_ADC0 Register [reset = 0x00] | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |--------|-------------------|-----------|------|--|-----------------------| | D[7:0] | IBUS_ADC[7:0] (1) | 0000 0000 | R | Low Byte of the 12-bit ADC IBUS Data (2mA resolution)
LSB<7:0>: 256mA, 128mA, 64mA, 32mA, 16mA, 8mA, 4mA, 2mA | Hard-reset or REG_RST | NOTE: 1. IBUS ADC[12:0] bits are reported in two's complement. ### REG0x2E: VBAT1_ADC1 Register [reset = 0x00] | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |--------|-----------------|---------|------|---|-----------------------| | D[7:4] | Reserved | 0000 | R | Reserved | N/A | | D[3:0] | VBAT1_ADC[11:8] | 0000 | R | Higher 4 bits of the 12-bit ADC VBAT1 Data (2mV resolution) MSB<3:0>: 4096mV, 2048mV, 1024mV, 512mV | Hard-reset or REG RST | ### REG0x2F: VBAT1_ADC0 Register [reset = 0x00] | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |--------|----------------|-----------|------|---|-----------------------| | D[7:0] | VBAT1_ADC[7:0] | 0000 0000 | R | Low Byte of the 12-bit ADC VBAT1 Data (2mV resolution)
LSB<7:0>: 256mV, 128mV, 64mV, 32mV, 16mV, 8mV, 4mV, 2mV | Hard-reset or REG_RST | ### **REG0x30: VBAT2_ADC1 Register [reset = 0x00]** | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |--------|-----------------|---------|------|---|-----------------------| | D[7:4] | Reserved | 0000 | R | Reserved | N/A | | D[3:0] | VBAT2_ADC[11:8] | 0000 | R | Higher 4 bits of the 12-bit ADC VBAT2 Data (2mV resolution) MSB<3:0>: 4096mV, 2048mV, 1024mV, 512mV | Hard-reset or REG RST | ### REG0x31: VBAT2_ADC0 Register [reset = 0x00] | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |--------|----------------|-----------|------|---|-----------------------| | D[7:0] | VBAT2_ADC[7:0] | 0000 0000 | R | Low Byte of the 12-bit ADC VBAT2 Data (2mV resolution)
LSB<7:0>: 256mV, 128mV, 64mV, 32mV, 16mV, 8mV, 4mV, 2mV | Hard-reset or REG_RST | ### **REG0x32: VOUT_ADC1 Register [reset = 0x00]** | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |--------|----------------|---------|------|--|-----------------------| | D[7:4] | Reserved | 0000 | R | Reserved | N/A | | D[3:0] | VOUT_ADC[11:8] | 0000 | R | Higher 4 bits of the 12-bit ADC VOUT Data (2mV resolution) MSB<3:0>: 4096mV, 2048mV, 1024mV, 512mV | Hard-reset or REG_RST | ### **REG0x33: VOUT_ADC0 Register [reset = 0x00]** | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |--------|---------------|-----------|------|--|-----------------------| | D[7:0] | VOUT_ADC[7:0] | 0000 0000 | R | Low Byte of the 12-bit ADC VOUT Data (2mV resolution)
LSB<7:0>: 256mV, 128mV, 64mV, 32mV, 16mV, 8mV, 4mV, 2mV | Hard-reset or
REG RST | ### REG0x34: IBAT_ADC1 Register [reset = 0x00] | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |--------|--------------------|---------|------|---|-----------------------| | D[7:3] | Reserved | 000 | R | Reserved | N/A | | D[4] | IBAT_ADC[12] (2) | 0 | R | Polarity of the 12-bit ADC IBAT Data 0 = Positive (Forward Charging) 1 = Negative (Reverse Discharging) | Hard-reset or REG_RST | | D[3:0] | IBAT_ADC[11:8] (2) | 0000 | R | Higher 4 bits of the 12-bit ADC IBAT Data (4mA resolution) MSB<3:0>: 8192mA, 4096mA, 2048mA, 1024mA | Hard-reset or REG_RST | ### REG0x35: IBAT_ADC0 Register [reset = 0x00] | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |--------|-------------------|-----------|------|--|-----------------------| | D[7:0] | IBAT_ADC[7:0] (2) | 0000 0000 | R | Low Byte of the 12-bit ADC IBAT Data (4mA resolution)
LSB<7:0>: 512mA, 256mA, 128mA, 64mA, 32mA, 16mA, 8mA, 4mA | Hard-reset or REG RST | NOTE: 2. IBAT_ADC[12:0] bits are reported in two's complement. ### **REG0x36: TDIE_ADC Register [reset = 0x00]** | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |--------|---------------|-----------|------|--|-----------------------| | D[7:0] | TDIE_ADC[7:0] | 0000 0000 | R | 8-bit ADC TDIE Data (1°C resolution)
LSB<7:0>: 128°C, 64°C, 32°C, 16°C, 8°C, 4°C, 2°C, 1°C
TDIE = TDIE_ADC[7:0] × 1°C - 40°C | Hard-reset or REG_RST | ### REG0x37: PROT_CTRL1 Register [reset = 0x00] | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |------|-----------------------|---------|------|--|-----------------------| | D[7] | VUSB_ABSENT_DIS | 0 | R/W | VUSB Absent Protection Disable Bit 0 = Enabled (default) 1 = Disabled | Hard-reset or REG_RST | | D[6] | VUSB2VOUT_OVP_
DIS | 0 | R/W | VUSB2VOUT OVP Protection Disable Bit for Forward Mode 0 = Enabled (default) 1 = Disabled | Hard-reset or REG_RST | | D[5] | VUSB_OVP_DIS | 0 | R/W | VUSB OVP Protection Disable Bit
0 = Enabled (default)
1 = Disabled | Hard-reset or REG_RST | | D[4] | VWPC_ABSENT_DIS | 0 | R/W | VWPC Absent Protection Disable Bit
0 = Enabled (default)
1 = Disabled | Hard-reset or REG_RST | | D[3] | VWPC2VOUT_OVP_
DIS | 0 | R/W | VWPC2VOUT OVP Protection Disable Bit for Forward Mode 0 = Enabled (default) 1 = Disabled | Hard-reset or REG_RST | | D[2] | VWPC_OVP_DIS | 0 | R/W | VWPC OVP Protection Disable Bit
0 = Enabled (default)
1 = Disabled | Hard-reset or REG_RST | | D[1] | VBUS_OVP_DIS | 0 | R/W | VBUS OVP Protection Disable Bit
0 = Enabled (default)
1 = Disabled | Hard-reset or REG_RST | | D[0] | VBUS_PK_OVP_DIS | 0 | R/W | VBUS Peak OVP Protection Disable Bit
0 = Enabled (default)
1 = Disabled | Hard-reset or REG_RST | REG0x38: PROT_CTRL2 Register [reset = 0x00] | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |------|-----------------------|---------|------|---|--------------------------| | D[7] | VOUT_OVP_DIS | 0 | R/W | VOUT OVP Protection Disable Bit 0 = Enabled (default) 1 = Disabled | Hard-reset or REG_RST | | D[6] | Reserved | 0 | R | Reserved | N/A | | D[5] | PEAK_OCP_QSW_
DIS | 0 | R/W | Switching FETs Bidirectional Peak OCP Protection Disable Bit 0 = Enabled (default) 1 = Disabled | Hard-reset or REG_RST | | D[4] | PMID2VOUT_UVP_
DIS | 0 | R/W | PMID2VOUT UVP Protection Disable Bit 0 = Enabled (default) 1 = Disabled | Hard-reset or REG_RST | | D[3] | PMID2VOUT_OVP_
DIS | 0 | R/W | PMID2VOUT OVP Protection Disable Bit 0 = Enabled (default) 1 = Disabled | Hard-reset or REG_RST | | D[2] | IBUS_OCP_DIS | 0 | R/W | IBUS OCP Protection Disable Bit 0 = Enabled (default) 1 = Disabled Note: Including IBUS_OCP protections of 6 SCC modes. | Hard-reset or
REG_RST | | D[1] | IBUS_UCP_DIS | 0 | R/W | IBUS UCP Protection Disable Bit 0 = Enabled (default) 1 = Disabled Note: Including IBUS_UCP_TIMEOUT and IBUS_UCP_FALL protections. | Hard-reset or
REG_RST | | D[0] | IBUS_RCP_DIS | 0 | R/W | BUS RCP Protection Disable Bit for Forward Mode 0 = Enabled (default) 1 = Disabled | Hard-reset or REG_RST | ## REG0x39: PROT_CTRL3 Register [reset = 0x00] | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |------|-----------------|---------|------|---|--------------------------| | D[7] | VBUS_ABSENT_DIS | 0 | R/W | VBUS Absent Protection Disable Bit 0 = Enabled (default) 1 = Disabled | Hard-reset or REG_RST | | D[6] | VBUS_UVP_DIS | 0 | R/W | VUSB UVP Protection Disable Bit 0 = Enabled (default) 1 = Disabled | Hard-reset or REG_RST | | D[5] | VBAT1_OVP_DIS | 0 | R/W | Note: Including VBUS_UVP41 and VBUS_UVP21 protections. VBAT1 OVP Protection Disable Bit 0 = Enabled (default) 1 = Disabled | Hard-reset or REG_RST | | D[4] | VBAT2_OVP_DIS | 0 | R/W | VBAT2 OVP Protection Disable Bit
0 = Enabled (default)
1 = Disabled | Hard-reset or REG_RST | | D[3] | IBAT_OCP_DIS | 0 | R/W | IBAT OCP Protection Disable Bit 0 = Enabled (default) 1 = Disabled | Hard-reset or REG_RST | | D[2] | VUSBOVP_ALM_DIS | 0 | R/W | VUSB OVP Alarm Disable Bit for Forward Mode 0 = Enabled (default) 1 = Disabled | Hard-reset or
REG_RST | | D[1] | VWPCOVP_ALM_DIS | 0 | R/W | VWPC OVP Alarm Disable Bit for Forward Mode 0 = Enabled (default) 1 = Disabled | Hard-reset or REG_RST | | D[0] | TDIEOTP_ALM_DIS | 0 | R/W | TDIE OTP Alarm Disable Bit 0 = Enabled (default) 1 = Disabled | Hard-reset or REG_RST | ### REG0x3A: PROT_CTRL4 Register [reset = 0x00] | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |------|------------------|---------|------|---|--------------------------| | D[7] | TDIE_OTP_DIS | 0 | R/W | TDIE OTP Protection Disable Bit 0 = Enabled (default) 1 = Disabled | Hard-reset or
REG_RST | | D[6] | VBAT_BRN_OUT_DIS | 0 | R/W | VBAT Brown-Out Protection Disable Bit for Reverse Mode
0 = Enabled (default)
1 = Disabled | Hard-reset or
REG_RST | | D[5] | VBUS_LO_DIS | 0 | R/W | VBUS Low Voltage Detection Disable Bit
0 = Enabled (default)
1 = Disabled | Hard-reset or REG_RST | | D[4] | VBUS_HI_DIS | 0 | R/W | VBUS High Voltage Detection Disable Bit 0 = Enabled (default) 1 = Disabled | Hard-reset or REG_RST | | D[3] | VBAT1OVP_ALM_DIS | 0 | R/W | VBAT1 OVP Alarm Disable Bit
0 = Enabled (default)
1 = Disabled | Hard-reset or
REG_RST | | D[2] | VBAT2OVP_ALM_DIS | 0 | R/W | VBAT2 OVP Alarm Disable Bit
0 = Enabled (default)
1 = Disabled | Hard-reset or REG_RST | | D[1] | IBATOCP_ALM_DIS | 0 | R/W | IBAT OCP Alarm Disable Bit for Forward Mode 0 = Enabled (default) 1 = Disabled | Hard-reset or
REG_RST | | D[0] | CFLY_SCP_DIS | 0 | R/W | CFLY Short Protection Disable Bit During Switching 0 = Enabled (default) 1 = Disabled | Hard-reset or
REG_RST | ### REG0xA1: BC1.2_FLAG Register [reset = 0x00] | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |--------|-------------------------|---------|------|--|------------| | D[7:6] | Reserved | 00 | R | Reserved | | | D[5] | VBUS_CHG_FLAG | 0 | RC | Event Flag of VBUS Voltage Change 0 = No VBUS voltage change event 1 = VBUS voltage change event has occurred, namely that VUSB insert or absent event has occurred. It generates an interrupt on nINT pin if unmasked. Reading this bit will reset it to 0. | Hard-reset | | D[4] | USB_DEVICE_CHG_
FLAG | 0 | RC | Event Flag of USB BC1.2 Device Status Bits Change 0 = No USB_DEVICE_STAT bits change event 1 = USB_DEVICE_STAT bits change event has occurred. It generates an interrupt on nINT pin if unmasked. Reading this bit will reset it to 0. | Hard-reset | | D[3:0] | Reserved | 0000 | R | Reserved | N/A | ## REG0xA2: BC1.2_MASK Register [reset = 0x00] | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |--------|-------------------------|---------|------|---|------------| | D[7:6] | Reserved | 00 | R | Reserved | N/A | | D[5] | VBUS_CHG_MASK | 0 | R/W | Mask Interrupt of VBUS Voltage Change Event 0 = Interrupt of VBUS voltage change event can work. (default) 1 = Mask interrupt of VBUS voltage change event. VBUS_CHG_FLAG bit sets after the fault, but this bit suppresses the interrupt signal on nINT pin. | Hard-reset | | D[4] | USB_DEVICE_CHG_
MASK | 0 | R/W | Mask Interrupt of USB BC1.2 Device Status Bits Change Event 0 = Interrupt of USB_DEVICE_STAT bits change event can work. | | | D[3:0] | Reserved | 0000 | R | Reserved | N/A | ### **REG0xA3:** DPDM_DETC Register [reset = 0x00] | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |--------|--------------|---------|------
---|------------| | D[7] | DPDM_DETC_EN | 0 | R/W | R/W 0 = Disabled (default) 1 = Enabled. The DP/DM detection results are updated every 8ms. | | | D[6:4] | DP_RSLT[2:0] | 000 | R | DP Pin Voltage Detection Result Bits 000 = 0V. The DP pin voltage is in the range of 0V to 0.05V. 001 = 0.2V. The DP pin voltage is in the range of 0.15V to 0.25V. 010 = 0.6V. The DP pin voltage is in the range of 0.55V to 0.65V. 011 = 1.8V. The DP pin voltage is in the range of 1.65V to 1.95V. 100 = 3.3V. The DP pin voltage is in the range of 3V to 3.6V. 111 = Error. The DP pin voltage is not listed above. Only valid when DPDM_DETC_EN bit is set to 1. | Hard-reset | | D[3] | Reserved | 0 | R | Reserved | N/A | | D[2:0] | DM_RSLT[2:0] | 000 | R | DM Pin Voltage Detection Result Bits 000 = 0V. The DM pin voltage is in the range of 0V to 0.05V. 001 = 0.2V. The DM pin voltage is in the range of 0.15V to 0.25V. 010 = 0.6V. The DM pin voltage is in the range of 0.55V to 0.65V. 011 = 1.8V. The DM pin voltage is in the range of 1.65V to 1.95V. 100 = 3.3V.The DM pin voltage is in the range of 3V to 3.6V. 111 = Error. The DM pin voltage is not in the ranges listed above. Only valid when DPDM_DETC_EN bit is set to 1. | Hard-reset | ### REG0xA4: BC1.2_CTRL Register [reset = 0x18] | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |--------|----------------|---------|------|---|------------| | D[7:6] | Reserved | 00 | R | Reserved | N/A | | D[5:4] | DCD_TIMER[1:0] | 01 | R/W | DCD Timer t _{DCD_TIMEOUT} Setting Bits 00 = The DCD detection is disabled. 01 = 600ms (default) 10 = 900ms 11 = The DCD timer is infinite. The BC1.2 detection cannot step forward until DP voltage is detected below V _{LGC LOW} . | Hard-reset | | D[3] | DCD_DELAY | 1 | R/W | DCD Detection Delay Time Setting Bit for BC1.2 This is delay time (t _{DCD_DLY}) from when BC1.2 is enabled and VBUS is present to when the DCD detection starts. 0 = 150ms 1 = 300ms (default) | Hard-reset | | D[2] | BC_AUTO_EN | 0 | R/W | BC1.2 Automatic Detection Enable Bit 0 = Disabled (default) 1 = Enabled. When VBUS is present, it will automatically start BC1.2 detection. | Hard-reset | | D[1:0] | Reserved | 00 | R | Reserved | N/A | ## **REG0xA5:** DPDM_DAC Register [reset = 0x00] | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |--------|-------------|---------|------|---|------------| | D[7:6] | Reserved | 00 | R | Reserved | N/A | | D[5:4] | DP_DAC[1:0] | 00 | R/W | DP Pin Output Driver Voltage Setting Bits 00 = HiZ mode (default) 01 = 0V (V _{0P0_VSRC}) 10 = 0.6V (V _{0P6_VSRC}) 11 = 3.3V (V _{3P3_VSRC}) Note: The bit configurations are invalid during BC1.2 detection | Hard-reset | | D[3:2] | DM_DAC[1:0] | 00 | R/W | DM Pin Output Driver Voltage Setting Bits 00 = HiZ mode (default) 01 = 0V (V _{0P0_VSRC}) 10 = 0.6V (V _{0P6_VSRC}) 11 = 3.3V (V _{3P3_VSRC}) Note: The bit configurations are invalid during BC1.2 detection | Hard-reset | | D[1] | DPDM_DAC_EN | 0 | R/W | Enable Bit of DP/DM DAC
0 = Disabled (default)
1 = Enabled | Hard-reset | | D[0] | Reserved | 0 | R | Reserved | N/A | ### **REG0xA8: USB_STAT Register [reset = 0x00]** | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |--------|----------------------|---------|------|--|------------| | D[7] | Reserved | 0 | R | Reserved | N/A | | D[6:4] | USB_DEVICE_STAT[2:0] | 000 | R | Status Bit of USB BC1.2 Device Detection 000 = No Input (default) 001 = BC1.2 detection in progress 010 = SDP device detected 011 = Non-standard adapter detected 100 = DCP device detected 101 = CDP device detected 110 ~ 111 = Reserved | Hard-reset | | D[3:1] | Reserved | 000 | R | Reserved | N/A | | D[0] | DCD_TIMEOUT_FLAG | 0 | RC | BC1.2 DCD Timeout Fault Flag Bit 0 = No BC1.2 DCD timeout fault (default) 1 = BC1.2 DCD timeout fault has occurred. It generates an interrupt on nINT pin. Read this bit to reset it to 0. | Hard-reset | ## REG0xD0: MISC_CTRL1 Register [reset = 0x00] | BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION | RESET BY | |--------|---------------------|---------|------|---|-----------------------| | D[7:3] | Reserved | 0000 0 | R | Reserved | N/A | | D[2:1] | IBUS_OCP_R11_E[1:0] | 00 | R/W | Extra Bits of IBUS OCP Protection Threshold for Reverse 1:1 Mode 00 = Keep IBUS_OCP_R11[1:0] setting in REG0x0A (default) 01 = 4A 10 = 5A 11 = 6A | Hard-reset or REG_RST | | D[0] | Reserved | 0 | R | Reserved | N/A | ### **DETAILED DESCRIPTION** The SGM41611 is an efficient 14A battery charger that can operate in 6 different modes (forward 4:1/2:1/1:1 step-down charging modes and reverse 1:4/1:2/1:1 step-up discharging modes). A two-channel switched-capacitor core is integrated in the device to minimize the ripples and improve efficiency. Two power paths control, a reverse blocking NFET and all other necessary protection features for safe charging are included. A high speed 12-bit ADC converter is also included to provide bus voltage, bus current, battery voltage, battery current, and die temperature information for the charge management host via I²C serial interface. #### Forward 4:1 Mode & Reverse 1:4 Mode In forward 4:1 mode, ignoring small energy loss in each switching period in steady state operation, the SGM41611 generates a VOUT voltage of $V_{PMID}/4$ and is capable of supplying up to 14A output current. In reverse 1:4 operation, it generates a PMID voltage of $4V_{VOUT}$ and is capable of supplying up to 1.5A current. Each channel of the 180° interleaved switched-capacitor charger operates with a fixed 50% duty cycle and reduces the ripple on the output voltage and current. The simplified single channel 4:1/1:4 switched-capacitor charger is shown in Figure 3. Figure 3. Power Stage of Single Channel 4:1/1:4 Switched-Capacitor Charger Selecting high quality C_{FLY} capacitors and proper switching frequency are the key factors for a well performing capacitor voltage divider. Switching frequency selection is a trade-off between efficiency and capacitor size. An optimum switching frequency can be found for any selected C_{FLY} capacitor to minimize losses. #### Forward 2:1 Mode & Reverse 1:2 Mode The SGM41611 can be configured to operate in forward 2:1 mode or in reverse 1:2 mode, where $Q_{7\text{A}}/Q_{7\text{B}}/Q_{6\text{A}}/Q_{6\text{B}}$ are always on. It generates a VOUT voltage of $V_{\text{PMID}}/2$ and is capable of supplying up to 12A output current. In reverse 1:2 operation, it generates a PMID voltage of $2V_{\text{VOUT}}$ and is capable of supplying up to 3A current. Each channel of the 180° interleaved switched-capacitor charger operates with a fixed 50% duty cycle and reduces the ripple on the output voltage and current. The simplified single channel 2:1/1:2 switched-capacitor charger is shown in Figure 4. Figure 4. Power Stage of Single Channel 2:1/1:2 Switched-Capacitor Charger #### Forward 1:1 Mode & Reverse 1:1 Mode The SGM41611 is designed to operate in bidirectional bypass mode when V_{VBUS} is close to the $V_{VOUT}.$ With proper settings, the device enters bypass mode, all switches between VBUS and VOUT are fully turned on, and $Q_{3A}/Q_{3B}/Q_{4A}/Q_{4B}$ are also fully turned on to provide bypass filtering, while the other switches remain off. When V_{BUS} is near $V_{VOUT},$ the bypass mode offers the best efficiency and the device is capable of sourcing up to 6A. The simplified single channel bypass mode switched-capacitor charger is shown in Figure 5. Figure 5. Power Stage of Single Channel 1:1 Switched-Capacitor Charger The output voltage is close to the input minus a voltage drop caused by the on-resistances of the RBFET plus the four high-side switches of the two channels in parallel: $$\begin{split} R_{\text{EFF}} & \text{ (Bypass mode)} \approx R_{DS_QRB} + (R_{DS_Q8A} + R_{DS_Q7A} + R_{DS_Q6A} \\ & + R_{DS_Q5A}) \parallel (R_{DS_Q8B} + R_{DS_Q7B} + R_{DS_Q6B} + R_{DS_Q5B}) \end{split}$$ where R_{DS OXX} is the on-resistance of the switch Q_{XX}. ### **Charge System** The SGM41611 is a slave charger device and needs a host. The host must set up all protection functions and disable the main charger before enabling the SGM41611. The host must monitor the nINT interrupts especially during high current charging. It must also communicate with the wall adapter to control the charge current. Figure 6 shows the block diagram of a charge system using the SGM41611 along with other devices. In this system, the SGM41611 can be used to detect the adapter by USB BC1.2 and the PD controller is used to communicate with adapter by PD protocol. When the smart wall adapter is detected, the AP unit controls the switching charger (SGM41516) that powers the load system and the
switched capacitor charger (SGM41611) that provides high current charging. The communication between those devices is through I²C interface. Figure 6. Simplified Charge System Figure 7. SGM41611 System Charging Profile A typical charge profile for a high-capacity battery using switching charger and switched capacitor charger together is shown in Figure 7. During the trickle charge and pre-charge, the charging is controlled by the switching charger. Once the battery voltage reaches V_{BAT_INSERT_R}, the adapter can negotiate for a higher bus voltage and enable the SGM41611 for charging (4:1, 2:1 or 1:1 mode). Once the battery voltage approaches the V_{BATXOVP_ALM} point, the SGM41611 will notify the AP to reduce the IBUS current, and the AP will negotiate with adapter for a lower bus voltage to effectively taper the current until a point where the IBUS current ramps down below I_{BUS_UCP_F}. ### **Startup Sequence** The SGM41611 is powered from the greater of VUSB, VWPC, VBUS or VOUT (VUSB and VWPC are used as sense input for adapter voltages as well). When V_{VOUT} rises above its UVLO rising threshold and the nLPM pin is connected to high, or V_{VUSB} , V_{VWPC} or V_{VBUS} rises above their respective UVLO rising threshold, the I^2C interface is ready for communication and all the registers are reset to default values. The device does not start charging after power-up, because by default the charger is disabled but the ADC can be enabled and the AP can read the system parameters before enabling charge. The charge can be enabled only if $V_{VBUS} > V_{BUS\ PRESENT\ R}$ and $V_{VOUT} > V_{BAT\ INSERT\ R}$. ## **Device Power-Up from Battery without Input Source** To reduce the quiescent current and maximize the battery run time when it is the only available source, low power mode can be set by pulling low the nLPM pin to achieve very small battery leakage. In low power mode, the REGN LDO and most of the sensing circuits are turned off, except VUSB_INSERT, VWPC_INSERT and VBUS_PRESENT functions. The SGM41611 exits low power mode when nLPM pin is pulled high or Vvusb/Vvbus rises above their respective UVLO rising threshold. #### **Device Power-Up from Input Source** When an input source is plugged-in and the conditions of $V_{VBUS} > V_{BUS_PRESENT_R}$ and $V_{VOUT} > V_{BAT_INSERT_R}$ are valid, the AP must initialize all protections to the desired thresholds before enabling charge. The protection thresholds that need to be set are VUSB_OVP, VWPC_OVP, VUSB2VOUT_OVP, VWPC2VOUT_OVP, PMID2VOUT_OVP, PMID2VOUT_UVP, VBUS_OVP, VBUS_UVP, IBUS_OCP, IBUS_UCP, IBUS_RCP, VOUT_OVP, VBAT_OVP, IBAT_OCP, PEAK_OCP, and TDIE_OTP. If one of the protection trigger conditions is met, the charger stops switching. It will also be turned off the corresponding external OVPFETs Q_{USB} and Q_{WPC} when VUSB_OVP or VWPC_OVP or VBUS_SC event occurs After setting protections, the VBUS voltage is checked to be between V_{BUS_LO} and V_{BUS_HI} to allow forward charge mode operation. Charging is enabled and current flows into the battery when the AP sets forward mode by writing 000/001/010 in the SCC_MODE[2:0] bits and sets SCC_EN = 1. Then raising the VBUS voltage will increase the battery charge current. When the converter is on, any command to change the charge mode is ignored. To do so, the charging must be disabled first, and then the charge mode can be changed by I^2C serial interface. The SGM41611 can run the input source type detection if the relevant bits are set. The SGM41611 follows the USB Battery Charging Specification 1.2 (BC1.2) to detect input source (SDP/DCP/CDP) and non-standard adapter through USB D+/D- lines. When the input source type detection is complete. it will set the USB DEVICE CHG FLAG bit to 1 and generate INT pulse to notify an the host USB DEVICE STAT[2:0] bits will be updated to indicate USB or adaptor input source types at the same time. #### **REGN Management** REGN provides the power required for the analog section. When V_{VOUT} is higher than 3.3V, it is powered by VOUT instead of PMID. A 4.7 μ F or lager capacitor is required on the REGN pin. ## **Dual Input Bi-Directional Power Path Management** The SGM41611 has USBGATE and WPCGATE pins to drive two sets of back-to-back N-channel FETs, which select and manage the input power from two different input sources (such as wired and wireless input sources). If the external Q_{WPC} is not populated in the schematic, then leave VWPC, WPCGATE and WPCSUB pins floating. So is USBGATE. For forward charging operation, USBGATE and WPCGATE can operate in two modes: auto-mode and manual mode. In reverse mode, both sets of FETs can be turned on/off manually. #### **Forward Auto-Mode** For the OVPFET forward operation, USBGATE and WPCGATE can operates in auto-mode by setting USBGATE_MODE and WPCGATE_MODE to 0. In auto-mode, USBGATE/WPCGATE is automatically turned on and off according to the VUSB/VWPC voltage. Taking USBGATE as an example, when the VUSB input source is inserted, the VUSB voltage exceeds VUSB_INSERT and not higher than VUSB_OVP thresholds, the USBGATE will be automatically turned on after tUSBGATE_ON_DEG deglitch time. Outside this range, USBGATE will be automatically turned off. If the two inputs appear on VUSB and VWPC at the same time, the USBGATE will be turned on with a higher priority, and the WPCGATE will be forcibly turned off; if not, USBGATE or WPCGATE will be turned on according to which input source is inserted first, and the other one will remain off even if a valid source is inserted later. When the running input source is plugged out or OVP failure occurs, the corresponding gate driver will be turned off, and the other gate driver will be turned on after 1ms delay if its input source is valid. The USBGATE_STAT and WPCGATE_STAT bits indicate the real-time ON/OFF status of USBGATE/WPCGATE. #### **Reverse Manual Mode** When the OVPFET operates in reverse mode, it must be turned on/off manually, depending on which port is desired for the reverse output. It will also turn off the corresponding external OVPFET Q_{USB} or Q_{WPC} when VUSB_OVP or VWPC_OVP fault occurs. To enter reverse operation mode, the AP should follow the steps below: - The AP writes USBGATE_MODE = 1 and USBGATE_EN = 0 and USBFET_ON_DIRECTION = 1, and/or writes WPCGATE_MODE = 1 and WPCGATE_EN = 0 and WPCFET ON DIRECTION = 1; - 2. The AP writes SCC_MODE[2:0] = 011/100/101; - 3. The AP writes SCC_EN = 1, and SGM41611 starts the reverse operation; - 4. SGM41611 sets VBUS_PRESENT_FLAG = 1 when $V_{VBUS} > V_{BUS_PRESENT_R}$ and It generates an INT pulse to notify the AP; - 5. The AP writes (USBGATE_EN = 1 and USBGATE_CTRL = 1) or (WPCGATE_EN = 1 and WPCGATE_CTRL = 1) depending on which port is desired for the reverse output; - 6. If VUSB_OVP or VWPC_OVP fault occurs, SGM41611 will turn off the corresponding external OVPFET Q_{USB} or Q_{WPC} - although USBGATE_EN/WPCGATE_EN is still 1. Then it generates an INT pulse to notify the AP, and SCC_EN will not be reset to 0: - The AP needs to reset USBGATE_EN = 0 or WPCGATE_ EN = 0, and can write 1 to the VUSB/VWPC/VBUS pull-down resistor enable bits as needed to discharge the residual energy. To exit reverse operation mode, the AP should follow the steps below: - The AP writes USBGATE_EN = 0 or WPCGATE_EN = 0, and SGM41611 turns off the corresponding external OVPFET Q_{USB} or Q_{WPC}; - 2. The AP writes SCC EN = 0; - 3. SGM41611 stops reverse operation and turns off the Q_{RB}; - The AP writes USBGATE_MODE = 0 and/or WPCGATE_ MODE = 0; - The AP can write 1 to the VUSB/VWPC/VBUS pull-down resistor enable bits as needed to discharge the residual energy. ### I²C Address Setting In addition to the SGM41611 requiring a $0.22\mu F$ MLCC capacitor between the CDRVH and CDRVL_ADS pins to provide driver supply, the CDRVL_ADS pin is also used to set the default I²C address during the POR procedure. Pull CDRVL_ADS low by a $75k\Omega$ resistor to AGND to select address 0x67. Pull CDRVL_ADS low by a $249k\Omega$ resistor to AGND or leave it floating to select address 0x68. Changes are not allowed after the startup procedure. #### **ADC** The SGM41611 integrates a fast 9-channel, 12-bit ADC converter to monitor input/output currents and voltages and the temperature of the device. The ADC is controlled by the ADC_CTRLx registers. Setting the ADC_EN bit to 1 enables the ADC. This bit can be used to turn off the ADC and save power when it is not needed. The ADC_RATE bit allows choosing continuous conversion or 1-shot conversion mode. The ADC operates independent of the faults, unless the AP sets the ADC_EN bit to 0. The ADC can operate if $V_{VBUS} > V_{BUS_PRESENT_R}$ or $V_{VOUT} > V_{BAT_INSERT_R}$ condition is valid. Otherwise the ADC conversion is postponed until one of them is satisfied. The ADC readings are valid only for DC values and not for transients. By default, all ADC channels are converted in continuous conversion mode except the channels disabled by the ADC_CTRLx registers. If the 1-shot conversion mode is selected, the ADC_DONE_FLAG bit is set to 1 when all channels are converted, then the ADC_EN bit is reset to 0. In the continuous conversion mode, the ADC_DONE_FLAG bit is set to 0. ### nINT Pin, Flag and Mask Bits The nINT pin is an open-drain output and must be pulled up to a logic high rail. It is pulled low with a duration of t_{INT} to notify the AP when it is triggered by an event. See the register map for all event flag and control bits. When an event occurs, a nINT signal is sent to the AP and the corresponding flag bit is set to 1. The flag bit can be read and some of them can be reset only after the fault is cleared. The nINT signal is not re-sent if an event is still present after the flag bit is read, unless another kind of event occurs. If an event mask bit is set, that event will not send nINT signal, but the flag bit is still updated independent of the mask bit.
The INT pulse generation behavior examples are shown in Figure 8. Figure 8. nINT Pulse Generation Behavior Examples ## Input Over-Voltage Protection (VUSB_OVP, VWPC_OVP) The SGM41611 monitors the adapter voltage on the VUSB/VWPC pin to use the USBGATE/WPCGATE output to control the external OVPFETs Q_{USB}/Q_{WPC} respectively. Taking VUSB OVP as an example, the VUSB over-voltage protection circuit is powered by VUSB and is enabled if V_{VUSB} rises above $V_{\text{USB INSERT R}}$. If V_{VUSB} is above $V_{\text{USB INSERT R}}$ for at least $t_{\mbox{\scriptsize USBGATE ON DEG}}$ time, when USBGATE MODE bit is set to forward auto-mode, the USBGATE will output drive signal to turn on the external OVPFET Q_{USB} . If the V_{VUSB} reaches the V_{USB OVP R} threshold, the gate voltage starts to drop and eventually the OVPFET QUSB is fully turned off. Figure 9 shows the VUSB_OVP and USBGATE operation timings. The V_{USB OVP R} threshold can be set by I²C serial interface. The adapter voltage must never exceed the absolute maximum rating of the VUSB/VWPC pin and the external OVPFETs. ### Input Short-Circuit Protection (VBUS_SC) The VBUS_SC function monitors the VBUS pin for short-circuit. This function is enabled if the external OVPFETs are turned on or if V_{VBUS} rises above $V_{BUS_PRESENT_R}.$ If the V_{VBUS} falls below 2.5V, the OVPFETs are turned off, and operation is stopped. SCC_EN bit is reset to 0 (disable). Also, VBUS_ABSENT_FLAG bit is set to 1, and an INT pulse is asserted. The device will wait for 512ms before automatically re-enabling and initiating startup sequence. ## VBUS Charge Voltage Range (VBUS_LO & VBUS HI) The VBUS_LO and VBUS_HI functions are included to avoid problems due to wrong VBUS setting for forward charging. If V_{VBUS} is beyond the range between V_{BUS_LO} and V_{BUS_HI} , the device remains in charge initiation operation. Once V_{VBUS} is within the charge range, forward charging will start and VBUS LO and VBUS HI functions will be disabled. # Input, Output and Battery Over-Voltage Protection (VBUS_OVP, VBUS_PK_OVP, VOUT_OVP and VBATx_OVP) The VBUS_OVP, VBUS_PK_OVP, VOUT_OVP and VBAT_OVP functions detect input and output voltage conditions. If either input or output voltage is higher than the protection threshold, the operation is stopped and the SCC_EN bit is reset to 0 (disable). The VBUS_OVP and VBUS_PK_OVP functions monitor VBUS pin voltage. The VOUT_OVP function monitors VOUT pin voltage. The VBATx_OVP uses BATPx and BATNx remote sense pins to monitor differential voltage between the battery terminals. To minimize the risk of battery terminal short in the manufacturing process, a 100Ω resistor needs to be connected in series to the BATPx and BATNx pin respectively. The VBUS_OVP, VOUT_OVP and VBATx_OVP thresholds can be set by I^2C serial interface. Figure 9. OVPGATE Operation Timing ## Bidirectional Bus and Battery Over-Current Protection (IBUS_OCPxx and IBAT_OCP) The IBUS_OCP function monitors the bidirectional current via $Q_{RB}.$ If SCC_EN bit is set to enable forward/reverse operation, the Q_{RB} is turned on and the IBUS_OCP function starts detecting the current. If the I_{BUS} reaches I_{BUS_OCPXX} threshold, the device stops operation and resets SCC_EN bit to 0 (disable). The bidirectional battery current is monitored by the voltage across an external series shunt resistor. This differential voltage is measured between SRP and SRN pins. If I_{BAT_OCP} threshold is reached, the device stops operation and resets SCC_EN bit to 0 (disable). The I_{BUS_OCPxx} and I_{BAT_OCP} thresholds can be set by I^2C serial interface. ### Input Under-Current Protection (IBUS_UCP) The IBUS_UCP function detects the input current via Q_{RB} during forward charging. After charging is started, the $t_{IBUS_UCP_BLK}$ timer is enabled and I_{BUS} current is compared with $I_{BUS_UCP_R}$. If I_{BUS} cannot exceed $I_{BUS_UCP_R}$ within $t_{IBUS_UCP_BLK}$, the charging will be stopped and SCC_EN bit is reset to 0 (disable). If I_{BUS} exceeds $I_{BUS_UCP_R}$ when $t_{IBUS_UCP_BLK}$ times out, from then on, if I_{BUS} falls below the $I_{BUS_UCP_F}$ threshold, the charging will be stopped and SCC_EN bit is reset to 0 (disable). The $t_{IBUS_UCP_BLK}$ timer can be set by I^2C serial interface. ## Input Reverse-Current Protection (IBUS RCP) The IBUS_RCP function detects the input reverse current via Q_{RB} during forward charging. If the reverse current flowing from the battery to the input source reaches IBUS_RCP threshold, the IBUS_RCP_FLAG bit is set to 1 and an INT pulse is generated, the charging will be stopped and SCC_EN bit is reset to 0 (disable). ## PMID Charge Voltage Range (PMID2VOUT UVP & PMID2VOUT OVP) The PMID2VOUT_UVP and PMID2VOUT_OVP functions are included to avoid problems caused by abnormal input or output transients during forward or reverse operation. If $(V_{\text{PMID}}/n - V_{\text{VOUT}})$ is beyond the range between $V_{\text{PMID2VOUT}_\text{UVP}}$ and $V_{\text{PMID2VOUT}_\text{OVP}},$ where n = 1, 2 or 4, depending on the operation mode, the operation will be stopped and SCC_EN bit is reset to 0 (disable). The $V_{\text{PMID2VOUT}_\text{UVP}}$ and $V_{\text{PMID2VOUT}_\text{OVP}}$ thresholds can be set by I^2C serial interface. #### **CFLY Diagnosis (PIN DIAG)** The CFLY diagnosis function identifies the health of flying capacitors before and during forward or reverse operation. The device initialization process is started after SCC_EN bit is set to 1. When V_{VBUS} and/or V_{BAT} are/is in the charge range, the flying capacitors in both channels are pre-charged. A CFLY open/short-circuit is detected if they cannot be charged. If so, the initialization process is stopped and SCC_EN bit is reset to 0 (disable). Even if CFLY capacitors pass the open/short-circuit test in the initialization process, the CFLY diagnosis function remains active and whenever a V_{CFxx} voltage falls, the operation is stopped and SCC_EN bit is reset to 0 (disable). The PIN_DIAG_FLAG bit is set to 1 and an INT pulse is generated as well. During a CFLY short-circuit event, other protection events such as IBUS_OCP, VBAT_OVP or PEAK_OCP may occur. A CFLY discharge circuit is activated before the internal RBFET (Q_{RB}) is turned on if $V_{VBUS} > V_{BUS_PRESENT_R}$ to prevent over-current stress at the start of charging. ### **VOUT Short-Circuit Protection (VOUT_SC)** The VOUT_SC function monitors the VOUT pin for short-circuit. This function is enabled during forward or reverse operation. If V_{VOUT} falls below V_{OUT_SC} (2.7V) threshold, the operation is stopped and SCC_EN bit is reset to 0 (disable). Also, the PIN_DIAG_FLAG bit is set to 1, and an INT pulse is generated. ## Bidirectional Converter Peak Over-Current Protection (PEAK_OCP) The PEAK_OCP function monitors the converter switch operating currents. If the switch current reach peak OCP threshold during forward or reverse operation, the PEAK_OCP_FLAG bit is set to 1 and an INT pulse is generated, the operation is stopped and SCC_EN bit is reset to 0 (disable). The switch peak OCP thresholds can be set by I²C serial interface. ## **TDIE Over-Temperature Protection** (TDIE OTP) The TDIE_OTP function prevents operation in over-temperature condition. The die temperature is monitored and if the $T_{\text{DIE_OTP_R}}$ threshold is reached, the operation is stopped and SCC_EN bit is reset to 0 (disable). The startup sequence cannot be initiated again until the die temperature falls down with a 20°C hysteresis. The TDIE_OTP threshold can be set by I^2 C serial interface. ### **APPLICATION INFORMATION** ## Input Capacitors (C_{VUSB} , C_{VWPC} , C_{VBUS} and C_{PMID}) Input capacitors are selected by considering two main factors: - 1. Adequate voltage margin above maximum surge voltage; - 2. Not too large voltage margin in order to limit the peak currents drawn from the source and reduce the input noise. For C_{VUSB} , C_{VWPC} and C_{VBUS} , use low ESR bypass ceramic capacitors placed close to the VUSB/VWPC/VBUS and PGND pins respectively. The C_{PMID} are determined by the minimum capacitance needed for stable operation and the required ESR to minimize the voltage ripple and load step transients. Typically, two 4.7 μ F or larger X5R ceramic capacitors are sufficient to meet the C_{PMID} requirements of two channels. Consider the DC bias derating of the ceramic capacitors. The X5R and X7R capacitors are relatively stable against DC bias and high temperature. Note that the bias effect is more severe with smaller package sizes, so choose the largest affordable package size. Also consider a large margin for the voltage rating for the worst-case transient input voltages. ### External OVPFETs (Q_{USB} and Q_{WPC}) The maximum recommended input range is 21V. If the supplied VUSB or VWPC voltage is above 21V, two sets of back-to-back N-channel OVPFETs are recommended between the adapter inputs and the SGM41611. Choose a low R_{DSON} MOSFET for the OVPFET to minimize power losses. #### Flying Capacitors (C_{FLY}) For selection of the C_{FLY} capacitors, the current rating, ESR and the bias voltage derating are critical parameters. The C_{FLY} capacitors are biased to different DC voltages according to the operation mode. To trade-off between efficiency and power density, set the C_{FLY} voltage ripple to the 2% of its DC bias voltage as a good starting point. The C_{FLY} for each phase can be calculated by Equation 1: $$C_{FLY} = \frac{I_{BAT}}{8f_{SW}V_{CFLY_RPP}} = \frac{I_{BAT}}{16\%f_{SW}V_{DC_CFLY}}$$ (1) where I_{BAT} is the charging current and V_{CFLY_RPP} is the peak-to-peak voltage ripple of the C_{FLY} . Choosing a too small capacitor for C_{FLY} results in lower efficiency and high output voltage/current ripples. However, choosing a too large C_{FLY} only provides minor efficiency
and output ripple improvements. The default switching frequency is $f_{SW} = 600kHz$. It can be adjusted by FSW_SET[2:0] bits in REG0x07. Lower frequency increases efficiency by reducing switching losses but requires larger capacitance to maintain low output ripple and low output impedance. An optimum switching frequency can be found for any selected C_{FLY} capacitor to minimize losses. ### Output Capacitor (C_{VOUT}) C_{VOUT} selection criteria are similar to the C_{FLY} capacitor. Larger C_{VOUT} value results in less output voltage ripple, but due to the dual-phase operation, the C_{VOUT} RMS current is much smaller than C_{FLY} , so smaller capacitance value can be chosen for C_{VOUT} as given in Equation 2: $$C_{VOUT} = \frac{I_{BAT} \times t_{DEAD}}{0.5 \times V_{VOUT RPP}}$$ (2) where t_{DEAD} is the dead time between the two phases and V_{VOUT_RPP} is the peak-to-peak output voltage ripple and is typically set to the 2% of V_{OUT} . C_{VOUT} is biased to the battery voltage and its nominal value should be derated for battery voltage DC bias. Typically two $10\mu F$, X5R or better grade ceramic capacitors placed close to the VOUT and PGND pins provide stable performance of two channels. ## External Bootstrap Capacitor (C_{BST1} and C_{BST2}) The bootstrap capacitors provide the gate driver supply voltage for the internal switches. Respectively place a 100nF low ESR ceramic capacitor between BST1A and CT3A pins, between BST2A and CT2A pins, between BST1B and CT3B pins and between BST2B and CT2B pins. #### **PCB Layout Guidelines** A good PCB layout is critical for stable operation of the SGM41611. Follow these guidelines for the best results: - 1. Use short and wide traces for VBUS as it carries high current. - 2. Minimize connectors wherever possible. Connector losses are significant especially at high currents. - 3. Use solid thermal vias for better thermal relief. - Bypass VBUS, PMID and VOUT pins to PGND with ceramic capacitors as close to the device pins as possible. - 5. Place C_{FLY} capacitors as close as possible to the device with small pad areas to reduce switching noise and EMI. - 6. Connect or reference all quiet signals to the AGND pin. - 7. Connect and reference all power signals to the PGND pins (preferably the nearest ones). - 8. Try not to interrupt or break the power planes by signal traces. ### TYPICAL APPLICATION CIRCUIT Figure 10. Typical Application Circuit of SGM41611 ### **REVISION HISTORY** NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Page # PACKAGE OUTLINE DIMENSIONS WLCSP-4.88×3.6-108B **TOP VIEW** RECOMMENDED LAND PATTERN (Unit: mm) **SIDE VIEW** **BOTTOM VIEW** | Symbol | Dimensions In Millimeters | | | | | | | | |--------|---------------------------|-------|-------|--|--|--|--|--| | Symbol | MIN | NOM | MAX | | | | | | | Α | - | - | 0.625 | | | | | | | A1 | 0.186 | - | 0.226 | | | | | | | D | 4.850 | - | 4.910 | | | | | | | E | 3.570 | - | 3.630 | | | | | | | d | 0.230 | - | 0.290 | | | | | | | е | 0.400 BSC | | | | | | | | | ccc | | 0.050 | | | | | | | NOTE: This drawing is subject to change without notice. ### TAPE AND REEL INFORMATION ### **REEL DIMENSIONS** ### **TAPE DIMENSIONS** DIRECTION OF FEED NOTE: The picture is only for reference. Please make the object as the standard. ### **KEY PARAMETER LIST OF TAPE AND REEL** | Package Type | Reel
Diameter | Reel Width
W1
(mm) | A0
(mm) | B0
(mm) | K0
(mm) | P0
(mm) | P1
(mm) | P2
(mm) | W
(mm) | Pin1
Quadrant | |---------------------|------------------|--------------------------|------------|------------|------------|------------|------------|------------|-----------|------------------| | WLCSP-4.88×3.6-108B | 7" | 12.4 | 3.80 | 5.37 | 0.69 | 4.0 | 8.0 | 2.0 | 12.0 | Q2 | ### **CARTON BOX DIMENSIONS** NOTE: The picture is only for reference. Please make the object as the standard. ### **KEY PARAMETER LIST OF CARTON BOX** | Reel Type | Length
(mm) | Width
(mm) | Height
(mm) | Pizza/Carton | |-------------|----------------|---------------|----------------|--------------| | 7" (Option) | 368 | 227 | 224 | 8 | | 7" | 442 | 410 | 224 | 18 |