

Automotive Low-side Driver with Dual Self-Protection Featuring Current and Temperature Limits

SGM42402Q

GENERAL DESCRIPTION

SGM42402Q is a dual self-protected, low-side driver, which provides several protection features, including over-current, over-temperature, and ESD, as well as integrated drain-to-gate clamping for over-voltage protection. With its safeguarding capabilities, this device is an ideal option for usage in harsh automotive environments.

The SGM42402Q is AEC-Q100 qualified (Automotive Electronics Council (AEC) standard Q100 Grade 1) and it is suitable for automotive applications.

The SGM42402Q is available in Green SOIC-8 and SOIC-8 (Exposed Pad) packages.

APPLICATIONS

Can Switch Resistance, Inductance and Capacitance Loads

Can Substitute Discrete Circuits and Electromechanical Relays

Automotive/Industrial

FEATURES

- AEC-Q100 Qualified for Automotive Applications
 Device Temperature Grade 1
 - $T_A = -40^{\circ}C$ to $+125^{\circ}C$
- Full Set of Protections
 - Short-Circuit Protection
 - Over-Voltage Protection
 - ESD Protection
 - Thermal Shutdown with Automatic Restart
- Clamp Integrated for Switching of Inductive Loads
- dV/dt Robustness
- 42V Drain-to-Source Breakdown Voltage
- Output Clamp Voltage: 42V
- Static Drain-to-Source On-Resistance: 110mΩ/Channel (TYP) at 10V
- Continuous Drain Current: SOIC-8:
 - 3.2A, 1-Channel On
 - 2.2A/CH, 2-Channel On

SOIC-8 (Exposed Pad):

- + 4.2A, 1-Channel On
- + 3.1A/CH, 2-Channel On

Output Peak Current (Thermal Limited): 8.8A

- Logic Level Input Capable of Analog Driving
- Available in Green SOIC-8 and SOIC-8 (Exposed Pad) Packages

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE ORDERING NUMBER		PACKAGE MARKING	PACKING OPTION	
SGM42402Q	SOIC-8	-40°C to +125°C	SGM42402QS8G/TR	0J4S8 XXXXX	Tape and Reel, 4000	
3GIVI42402Q	SOIC-8 (Exposed Pad)	-40°C to +125°C	SGM42402QPS8G/TR	0F3PS8 XXXXX	Tape and Reel, 4000	

MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

ADOULUTE IIIAMIIIOIII IVATIIVOO
Internally Clamped Drain-to-Source Voltage
V _{DSS} 42V
$V_{DSS} (T_J = -40^{\circ}C)$ 38V
Internally Clamped Drain-to-Gate Voltage
V _{DGR} 42V
$V_{DGR} (T_J = -40^{\circ}C)$
Gate-to-Source Voltage, V _{GS} ±14V
Continuous Drain Current, I _{DS} Internally Limited
Maximum Continuous Drain Current, I _{DS} (T _J = +25°C)
SOIC-8, 1-Channel On
SOIC-8, 2-Channel On2.2A/CH
SOIC-8 (Exposed Pad), 1-Channel On4.2A
SOIC-8 (Exposed Pad), 2-Channel On
Single Pulse Drain-to-Source Avalanche Energy (V _{DD} = 32V,
$V_G = 5.0V$, $I_{PK} = 1.0A$, $L = 300$ mH, $R_{G_EXT} = 25\Omega$), E_{AS} (1)
Load Dump Voltage (V _{GS} = 0V and 10V, R _I = 2.0Ω , R _L = 9.0Ω ,
$t_d = 400 \text{ms}$), V_{LD}
Package Thermal Resistance
SOIC-8, θ_{JA}
SOIC-8, θ_{JB}
SOIC-8, θ _{JC}
SOIC-8 (Exposed Pad), θ _{JA}
SOIC-8 (Exposed Pad), θ_{JB}
SOIC-8 (Exposed Pad), θ _{JC (TOP)}
SOIC-8 (Exposed Pad), θ _{JC (BOT)}
Junction Temperature+150°C
Storage Temperature Range65°C to +150°C
Lead Temperature (Soldering, 10s)+260°C
ESD Susceptibility
HBM
CDM2000V

NOTE:

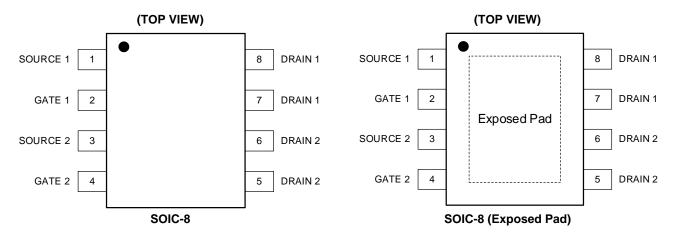
$$1. \ E_{AS} = \frac{1}{2} \times L \times I_{PK}^2 \times \left(1 - \frac{V_{BAT}}{V_{BAT} - V_{CLAMP}}\right)$$

RECOMMENDED OPERATING CONDITIONS

Operating Ambient Temperature Range -40°C to +125°C Operating Junction Temperature Range -40°C to +150°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.


ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATIONS

PIN DESCRIPTION

Р	PIN		NAME		
SOIC-8	SOIC-8 (Exposed Pad)	SYMBOL	NAME		
1	1	S	SOURCE 1		
2	2	G	GATE 1		
3	3	S	SOURCE 2		
4	4	G	GATE 2		
5, 6	5, 6	D	DRAIN 2		
7, 8	7, 8	D	DRAIN 1		
_	Exposed Pad	_	GND or SOURCE		

ELECTRICAL CHARACTERISTICS

 $(T_J = +25^{\circ}C, \text{ unless otherwise noted.})$

PARAMETER	SYMBOL		MIN	TYP	MAX	UNITS	
Off Characteristics							
Danie 12 Octobre Barrielana Vallana (1)		V _{GS} = 0V, I _{DS} = 10mA, T _J = +25°C		38 (4)	42	44	.,
Drain-to-Source Breakdown Voltage (1)	V_{BR_DSS}	$V_{GS} = 0V, I_{DS}$	$V_{GS} = 0V$, $I_{DS} = 10$ mA, $T_J = +125$ °C (3)		43	45	V
D : 0		$V_{GS} = 0V, V_{D}$	$V_{GS} = 0V, V_{DS} = 32V, T_{J} = +25^{\circ}C$			0.4	
Drain Current at Zero Gate Voltage	I _{DSS}	$V_{GS} = 0V, V_{D}$	$V_{GS} = 0V, V_{DS} = 32V, T_{J} = +125^{\circ}C^{(3)}$		0.2	1	μA
Gate Input Current	I _{GSSF}	$V_{DS} = 0V, V_{G}$	_{IS} = 5V		225	300	μΑ
On Characteristics (1)							
Gate Threshold Voltage	V_{GS_TH}	$V_{GS} = V_{DS}, I_{D}$	os = 150μA	1.3	1.75	2.2	V
Gate Threshold Temperature Coefficient	V _{GS_TH} /T _J				3.0		-mV/°C
Static Drain-to-Source	D	V _{GS} = 10V, I _E	os = 1.7A, T _J = +25°C		110	135	m0
On-Resistance/Channel	R_{DSON}	V _{GS} = 10V, I _E	$_{OS} = 1.7A, T_{J} = +125^{\circ}C^{(3)}$		150	175	mΩ
Source-Drain Forward On Voltage	V _{SD}	$V_{GS} = 0V, I_S = 0$	= 7A		1.23		V
Switching Characteristics (3)							
Turn-On Time	t _{ON}		10% V _{IN} to 90% I _{DS}		34	45	μs
Turn-Off Time	t _{OFF}],, ,,,,	90% V _{IN} to 10% I _{DS}		86	110	μs
Turn-On Rise Time	t _{RISE}	$V_{GS} = 10V, V_{DD} = 12V,$	10% I _{DS} to 90% I _{DS}		21	30	μs
Turn-Off Fall Time	t _{FALL}	$I_{DS} = 2.5A,$ $R_{L} = 4.7\Omega$	90% I _{DS} to 10% I _{DS}		42	60	μs
Slew-Rate On	-dV _{DS} /dt _{ON}	K _L - 4.712	70% to 50% V _{DD}		0.67	1.0	V/µs
Slew-Rate Off	dV _{DS} /dt _{OFF}	50% to 70% V _{DD}			0.29	0.4	V/µs
Self-Protection Characteristics (2)							
		$V_{DS} = 10V$, $V_{GS} = 5V$, $T_{J} = +25$ °C		7.8	8.8	9.8	- A
Current Limit		$V_{DS} = 10V, V_{GS} = 5V, T_{J} = +125^{\circ}C^{(3)}$		5.3	6.8	8.6	
Current Limit	I _{LIM}	V _{DS} = 10V, V _{GS} = 10V, T _J = +25°C		8	9	10	
		$V_{DS} = 10V, V_{GS} = 10V, T_{J} = +125^{\circ}C^{(3)}$		5.5	7	8.8	
Temperature Limit (Turn-Off)	T _{LIM_OFF}	$V_{GS} = 5V^{(3)}$			155		
Thermal Hysteresis	$\Delta T_{\text{LIM_ON}}$	$V_{GS} = 5V$			20		
Temperature Limit (Turn-Off)	$T_{\text{LIM_OFF}}$	$V_{GS} = 10V^{(3)}$			155		℃
Thermal Hysteresis	$\Delta T_{\text{LIM_ON}}$	V _{GS} = 10V			20]
Gate Input Characteristics (3)							
Cota lanut Current in Davida On State	1	V _{GS} = 5V, I _{DS} = 1A			225		
Gate Input Current in Device On State	I _{GON}	V _{GS} = 10V, I _{DS} = 1A			225		μA
Cata Input Current in Current Limit Ct-t-	I _{GCL}	V _{GS} = 5V, V _{DS} = 10V			0.24		mA
Gate Input Current in Current Limit State		V _{GS} = 10V, V		0.24			
Gate Input Current in Thermal Limit Fault		V _{GS} = 5V, V _{DS} = 10V			0.08		m ^
State	I _{GTL}	V _{GS} = 10V, V		0.08		- mA	

NOTES:

- 1. Pulse test: pulse width \leq 300µs, duty cycle \leq 2%.
- 2. Fault conditions are considered to be outside the normal operating range of the component.
- 3. Not included in the production testing.
- 4. MIN value including -40°C.

TEST CIRCUITS AND WAVEFORMS

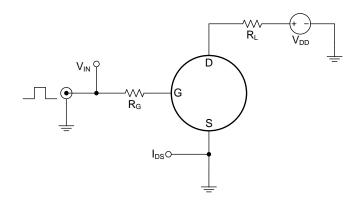


Figure 1. Test Circuit for Switching Resistive Loads

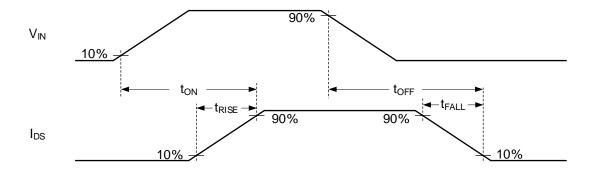


Figure 2. Waveforms for Switching Resistive Loads

TEST CIRCUITS AND WAVEFORMS (continued)

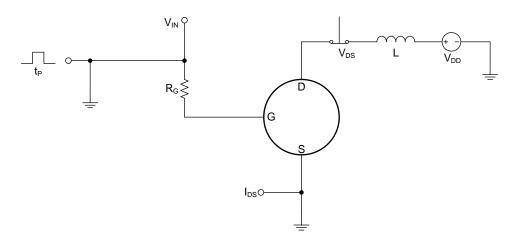
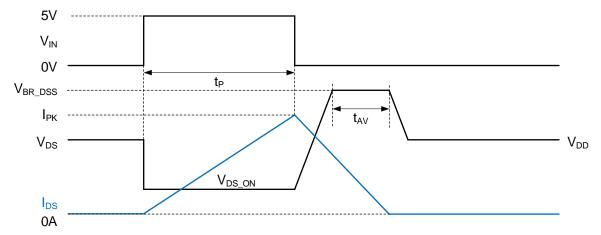
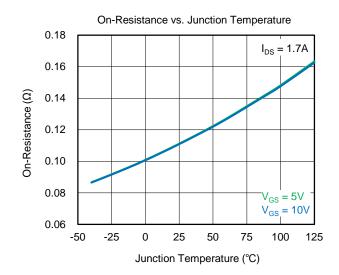
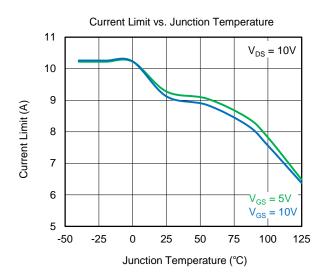
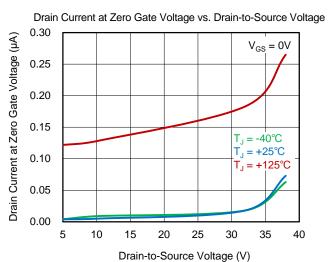
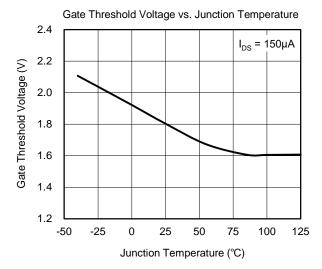
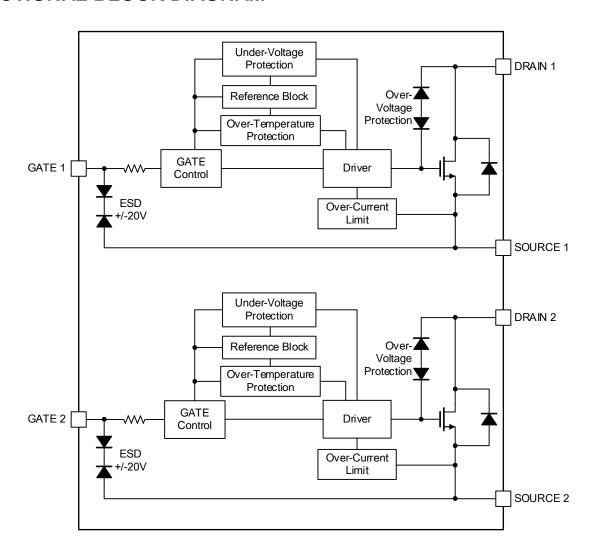


Figure 3. Test Circuit for Switching Inductive Loads

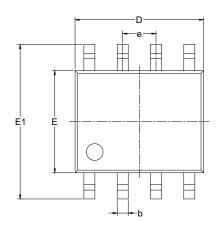





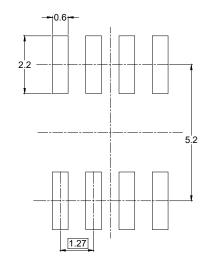

Figure 4. Waveforms for Switching Inductive Loads

TYPICAL PERFORMANCE CHARACTERISTICS

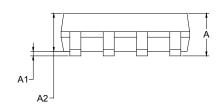


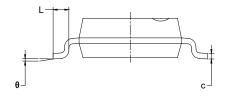
FUNCTIONAL BLOCK DIAGRAM


REVISION HISTORY

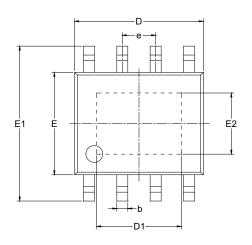

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

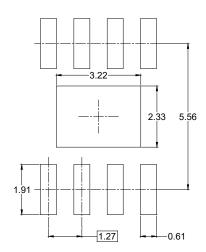
Page




PACKAGE OUTLINE DIMENSIONS SOIC-8

RECOMMENDED LAND PATTERN (Unit: mm)


Symbol	-	nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.27	BSC	0.050	BSC	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

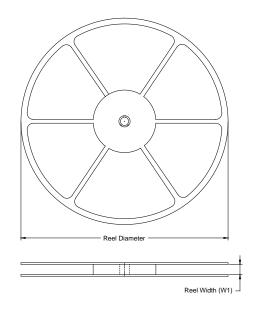

- NOTES:

 1. Body dimensions do not include mode flash or protrusion.

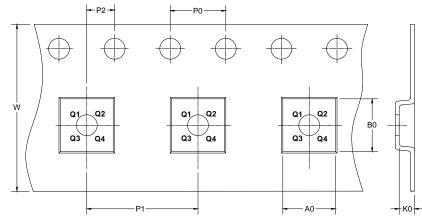
 2. This drawing is subject to change without notice.

PACKAGE OUTLINE DIMENSIONS SOIC-8 (Exposed Pad)

RECOMMENDED LAND PATTERN (Unit: mm)


Symbol	Dimensions In Millimeters						
	MIN	NOM	MAX				
А			1.700				
A1	0.000	-	0.150				
A2	1.250	-	1.650				
b	0.330	-	0.510				
С	0.170	-	0.250				
D	4.700	-	5.100				
D1	3.020	-	3.420				
E	3.800	-	4.000				
E1	5.800	-	6.200				
E2	2.130	-	2.530				
е	1.27 BSC						
L	0.400	-	1.270				
θ	0°	-	8°				
ccc	0.100						

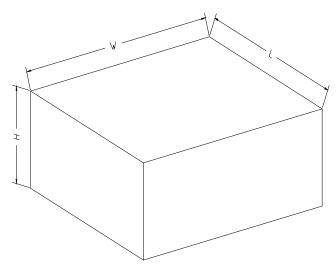
NOTES:


- This drawing is subject to change without notice.
 The dimensions do not include mold flashes, protrusions or gate burrs.
- 3. Reference JEDEC MS-012.

TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSIONS


DIRECTION OF FEED

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOIC-8	13"	12.4	6.40	5.40	2.10	4.0	8.0	2.0	12.0	Q1
SOIC-8 (Exposed Pad)	13"	12.4	6.40	5.40	2.10	4.0	8.0	2.0	12.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
13″	386	280	370	5	