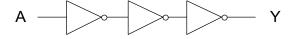


74LVC1G04XG Single Inverter Gate

GENERAL DESCRIPTION

The 74LVC1G04XG is a single inverter gate that can accept the supply voltage range from 1.65V to 5.5V. The device features the Boolean function $Y = \overline{A}$.


The 74LVC1G04XG is capable of holding high output drive while low static power dissipation can be maintained over the supply voltage operating range.

The 74LVC1G04XG is available in a Green WLCSP-0.89×0.89-4B package. It operates over an ambient temperature range of -40°C to +125°C.

APPLICATIONS

Audio Equipment
Battery Powered Equipment
Industrial Equipment
Computing: Server, PC and Notebook
Medical Equipment

LOGIC DIAGRAM

FEATURES

- Wide Supply Voltage Range: 1.65V to 5.5V
- Input Accepts Voltages up to 5.5V
- +24mA/-24mA Output Current at V_{CC} = 3.0V
- Low Quiescent Current: I_{CC} = 10μA (MAX)
- Propagation Delay:
 2.4ns (TYP) at V_{CC} = 3.3V and C_L = 15pF
- Support Partial Power-Down Mode, Live Insertion and Back-Drive Protection
- -40°C to +125°C Operating Temperature Range
- Available in a Green WLCSP- 0.89×0.89-4B Package

FUNCTION TABLE

INPUT	OUTPUT
Α	Y
Н	L
L	Н

$Y = \overline{A}$

H = High Voltage Level L = Low Voltage Level

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
74LVC1G04XG	WLCSP-0.89×0.89-4B	-40°C to +125°C	74LVC1G04XG/TR	00 XX	Tape and Reel, 5000

MARKING INFORMATION

NOTE: XX = Date Code. X = Date Code.

YYY X X

Date Code - Week

Date Code - Year

Serial Number

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V _{CC}	0.5V to 6.5V
Input Voltage, V _I ⁽¹⁾	0.5V to 6.5V
Output Voltage, V _O ⁽¹⁾	
High-State or Low-State0.5V to N	$IIN(6.5V, V_{CC} + 0.5V)$
Power-Off Mode	0.5V to 6.5V
Input Clamp Current, I _{IK} (V _I < 0V)	50mA
Output Clamp Current, I_{OK} ($V_O < 0V$)	50mA
Continuous Output Current, Io	±50mA
Continuous Current through V _{CC} or GNE	D±100mA
Junction Temperature (2)	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility (3) (4)	
HBM	±2000V
CDM	±1000V

NOTES:

- 1. The input and output voltage ratings may be exceeded if the input and output clamp current ratings are observed.
- 2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability.
- 3. For human body model (HBM), all pins comply with ANSI/ESDA/JEDEC JS-001 specifications.
- 4. For charged device model (CDM), all pins comply with ANSI/ESDA/JEDEC JS-002 specifications.

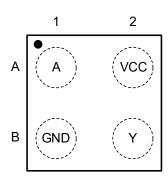
RECOMMENDED OPERATING CONDITIONS

Supply Voltage, V _{CC}	1.65V to 5.5V
Input Voltage, V _I	0V to 5.5V
Output Voltage, V ₀	0V to V _{CC}
Input Transition Rise or Fall Rate, Δt/ΔV	
V _{CC} = 1.8V ± 0.15V, 2.5V ± 0.2V	20ns/V (MAX)
V _{CC} = 3.3V ± 0.3V	10ns/V (MAX)
V _{CC} = 5.0V ± 0.5V	5ns/V (MAX)
Operating Temperature Range	40°C to +125°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION


This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATION

(TOP VIEW)

WLCSP-0.89×0.89-4B

PIN DESCRIPTION

PIN	NAME	FUNCTION
A1	Α	Data Input.
B1	GND	Ground.
B2	Υ	Data Output.
A2	VCC	Supply Voltage.

ELECTRICAL CHARACTERISTICS

(Full = -40°C to +125°C, all typical values are measured at T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS	
		V _{CC} = 1.65V to 1.95V	Full	0.65 × V _{CC}				
High Lavel Invest Valtage	.,	V _{CC} = 2.3V to 2.7V	Full	1.7			V	
High-Level Input Voltage	V _{IH}	V _{CC} = 2.7V to 3.6V	Full	2.0				
		V _{CC} = 4.5V to 5.5V	Full	0.7 × V _{CC}				
		V _{CC} = 1.65V to 1.95V	Full			0.35 × V _{CC}		
Land and bound Vallana	.,	V _{CC} = 2.3V to 2.7V	Full			0.7	.,	
Low-Level Input Voltage	V _{IL}	V _{CC} = 2.7V to 3.6V	Full			0.8	V	
		V _{CC} = 4.5V to 5.5V	Full			0.3 × V _{CC}		
		$V_{CC} = 1.65V \text{ to } 5.5V, I_{OH} = -100\mu\text{A}$	Full	V _{CC} - 0.1	V _{CC} - 0.01			
		V _{CC} = 1.65V, I _{OH} = -4mA	Full	1.20	1.50			
		V _{CC} = 2.3V, I _{OH} = -8mA	Full	1.90	2.10		V	
High-Level Output Voltage	V _{он}	V _{CC} = 2.7V, I _{OH} = -12mA	Full	2.30	2.45			
		V _{CC} = 3.0V, I _{OH} = -16mA	Full	2.40	2.70			
		V _{CC} = 3.0V, I _{OH} = -24mA	Full	2.30	2.60		-	
		V _{CC} = 4.5V, I _{OH} = -32mA	Full	3.80	4.05			
		V _{CC} = 1.65V to 5.5V, I _{OL} = 100μA	Full		0.01	0.10		
		V _{CC} = 1.65V, I _{OL} = 4mA	Full		0.10	0.45		
		V _{CC} = 2.3V, I _{OL} = 8mA	Full		0.15	0.30		
Low-Level Output Voltage	V _{OL}	V _{CC} = 2.7V, I _{OL} = 12mA	Full		0.20	0.50	V	
		V _{CC} = 3.0V, I _{OL} = 16mA	Full		0.20	0.40		
		V _{CC} = 3.0V, I _{OL} = 24mA	Full		0.30	0.55	1	
		V _{CC} = 4.5V, I _{OL} = 32mA	Full		0.35	0.55		
Input Leakage Current	I _I	V _{CC} = 0V to 5.5V, V _I = 5.5V or GND	Full		±0.1	±5	μA	
Power-Off Leakage Current	I _{OFF}	$V_{CC} = 0V, V_1 \text{ or } V_0 = 5.5V$	Full		±0.1	±10	μA	
Supply Current	Icc	V_{CC} = 1.65V to 5.5V, V_{I} = 5.5V or GND, I_{O} = 0A	Full		0.1	10	μΑ	
Additional Supply Current	ΔI _{CC}	$V_{CC} = 3.0V \text{ to } 5.5V, V_I = V_{CC} - 0.6V$	Full		0.1	500	μΑ	
Input Capacitance	Cı	$V_{CC} = 3.3V$, $V_{I} = V_{CC}$ or GND	+25°C		4		pF	

DYNAMIC CHARACTERISTICS

(See Figure 1 for test circuit. Full = -40°C to +125°C, all typical values are measured at T_A = +25°C and V_{CC} = 1.8V, 2.5V, 3.3V and 5.0V respectively, unless otherwise noted.)

PARAMETER	SYMBOL		CONDITIO	ONS	TEMP	MIN (1)	TYP	MAX (1)	UNITS
				$V_{CC} = 1.8V \pm 0.15V$	Full	0.5	5.3	12.5	
			C _∟ = 15pF	$V_{CC} = 2.5V \pm 0.2V$	Full	0.5	3.1	6.7	
			CL - 15pr	$V_{CC} = 3.3V \pm 0.3V$	Full 0.5 Full 0.5 Full 0.5 / Full 1.0 Full 1.0 Full 1.0 Full 1.0 Full 1.0 +25°C	2.4	5.1		
Propagation Delay (2)		A to Y, see		$V_{CC} = 5.0V \pm 0.5V$	Full	0.5	1.7	4.0	20
Propagation Delay	t _{PD}	$C_L = 30 pF \text{ or } V_{CC} = 2.5 V \pm 0.2 V $ Full $V_{CC} = 3.3 V \pm 0.3 V $ Full	C _L = 30pF or	$V_{CC} = 1.8V \pm 0.15V$	Full	1.0	6.2	15.0	ns
				V _{CC} = 2.5V ± 0.2V	Full	1.0	4.1	7.9	
			1.0	3.8	6.8				
				$V_{CC} = 5.0V \pm 0.5V$	Full	1.0	3.3	5.5	
				V _{CC} = 1.8V	+25°C		12		
Power Dissipation Capacitance (3)		£ 40N4LI-		V _{CC} = 2.5V	+25°C		13		pF
	C _{PD}	f = 10MHz		V _{CC} = 3.3V	+25°C		14		
				V _{CC} = 5.0V	+25°C		16		

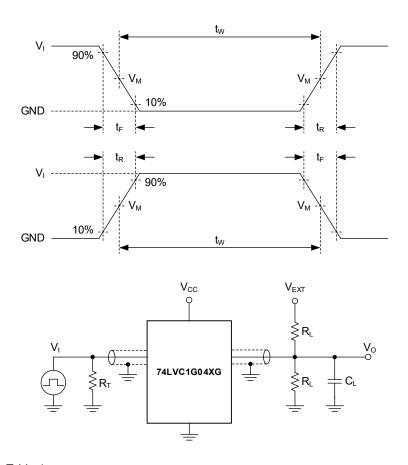
NOTES:

- 1. Specified by design and characterization, not production tested.
- 2. t_{PD} is the same as t_{PLH} and t_{PHL} .
- 3. C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

$$P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$$
 where:

 f_i = Input frequency in MHz.

 f_o = Output frequency in MHz.


C_L = Output load capacitance in pF.

 V_{CC} = Supply voltage in Volts.

N = Number of inputs switching.

 $\Sigma(C_L \times V_{CC}^2 \times f_o) = Sum of outputs.$

TEST CIRCUIT

Test conditions are given in Table 1.

Definitions for test circuit:

R_L: Load resistance.

C_L: Load capacitance (includes jig and probe).

R_T: Termination resistance (equals to output impedance Zo of the pulse generator).

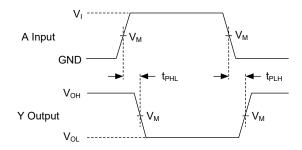

V_{EXT}: External voltage is used to measure switching times.

Figure 1. Test Circuit for Measuring Switching Times

Table 1. Test Conditions

SUPPLY VOLTAGE	INPUT		LO	V _{EXT}	
V _{CC}	Vı	t _R , t _F	CL	R _L	t _{PLH} , t _{PHL}
1.8V ± 0.15V	Vcc	≤ 2.0ns	30pF	1kΩ	Open
2.5V ± 0.2V	Vcc	≤ 2.0ns	30pF	500Ω	Open
3.3V ± 0.3V	3.0V	≤ 2.5ns	50pF	500Ω	Open
5.0V ± 0.5V	V _{CC}	≤ 2.5ns	50pF	500Ω	Open

WAVEFORMS

Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 2. Input (A) to Output (Y) Propagation Delays

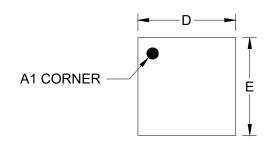
Table 2. Measurement Points

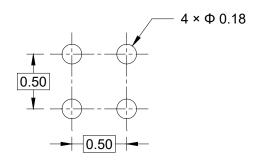
SUPPLY VOLTAGE	INF	OUTPUT	
V _{cc}	Vı	V _M ⁽¹⁾	V _M
1.8V ± 0.15V	V _{CC}	0.5 × V _{CC}	0.5 × V _{CC}
2.5V ± 0.2V	V _{CC}	0.5 × V _{CC}	0.5 × V _{CC}
3.3V ± 0.3V	3.0V	1.5V	1.5V
5.0V ± 0.5V	Vcc	0.5 × V _{CC}	0.5 × V _{CC}

NOTE:

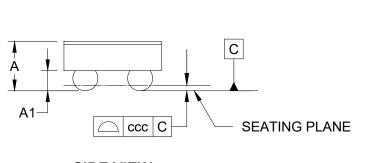
1. The measurement points should be V_{IH} or V_{IL} when the input rising or falling time exceeds 2.5ns.

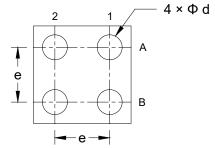
REVISION HISTORY


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.


Changes from Original to REV.A (DECEMBER 2025)

Page

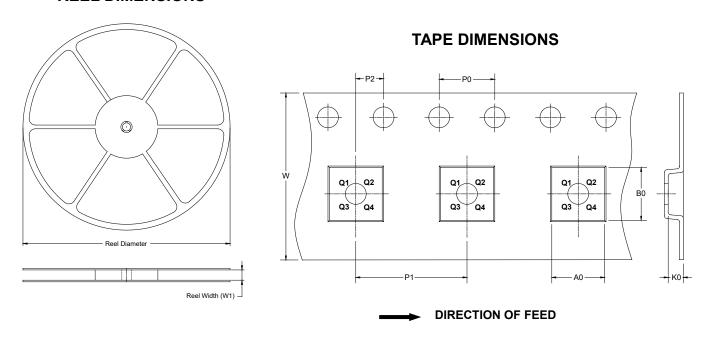

PACKAGE OUTLINE DIMENSIONS WLCSP-0.89×0.89-4B



TOP VIEW

RECOMMENDED LAND PATTERN (Unit: mm)

SIDE VIEW

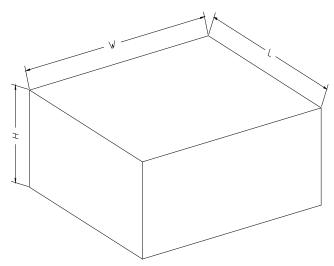

BOTTOM VIEW

Symbol	Dimensions In Millimeters						
Symbol	MIN	NOM	MAX				
Α	-	-	0.500				
A1	0.164	-	0.204				
D	0.860	-	0.920				
E	0.860	-	0.920				
d	0.198 - 0.258						
е	0.500 BSC						
ccc	0.050						

NOTE: This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
WLCSP-0.89×0.89-4B	7"	9.5	1.02	1.02	0.62	4.0	2.0	2.0	8.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
7" (Option)	368	227	224	8
7"	442	410	224	18