V_{BUS} Directly Powered, High Speed USB 2.0 (480Mbps) DPDT Analog Switch

GENERAL DESCRIPTION

The SGM7226 is a DPDT (double-pole/double-throw) analog switch. It operates from a 1.8V to 5.5V single power supply and can be powered directly by V_{BUS} . Each switch of the SGM7226 is bidirectional, which can ensure that the high speed signals have little or no attenuation at the outputs.

The SGM7226 features high speed, low power and wide bandwidth. The high performances make it very suitable for multiple applications, such as cellular phones and computer peripherals, etc.

The SGM7226 has a power-off protection. It can prevent accidental signal leakage and ensure system reliability under power-down and over-voltage conditions. In addition, the device is capable of withstanding a V_{BUS} short to D+ or D- when the device is either powered on or powered off due to the special circuitry on the D+/D- pins.

The SGM7226 is available in a Green TQFN-2.6×1.8-16L package. It operates over an ambient temperature range of -40°C to +85°C.

FEATURES

- Supply Voltage Range: 1.8V to 5.5V
- V_{BUS} Directly Power
- On-Resistance: 5Ω (TYP)
- High Off-Isolation: -35dB ($R_L = 50\Omega$, f = 250MHz)

SGM7226

- Low Crosstalk: -30dB ($R_L = 50\Omega$, f = 250MHz)
- -3dB Bandwidth: 550MHz
- Fast Switching Times at V_{CC} = 5V:
 - t_{ON} = 15ns (TYP) t_{OFF} = 20ns (TYP)
- Break-Before-Make Switching
- Power-Off and Power-On Protections
- -40°C to +85°C Operating Temperature Range
- Available in a Green TQFN-2.6×1.8-16L Package

APPLICATIONS

Cellular Phones

Digital Cameras

Portable Equipment

Computer Peripherals

Battery-Powered Systems

Routes Signals for USB 2.0 Full-Speed

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM7226	TQFN-2.6×1.8-16L	-40°C to +85°C	SGM7226YTQA16G/TR	7226 XXXXX	Tape and Reel, 3000

MARKING INFORMATION

NOTE: XXXXX = Date Code and Vendor Code.

XXXXX

Vendor Code

Date Code - Week

Date Code - Year

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

V _{CC} to GND	0V to 6.0V
V _{SET}	0.3V to 5.5V
OE , S, HSDn+, HSDn-, D+, D	0.3V to 3.3+0.3V
Continuous Current HSDn or Dn	±50mA
Peak Current HSDn or Dn	±100mA
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility	
HBM	V00088000V
MM	400V

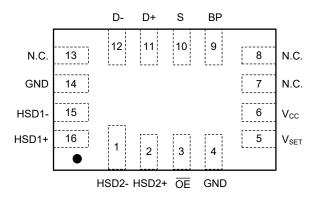
RECOMMENDED OPERATING CONDITIONS

Supply Voltage Range	1.8V to 5.5V
Operating Temperature Range	40°C to +85°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

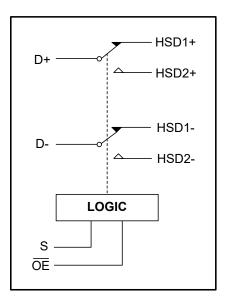
ESD SENSITIVITY CAUTION


This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATION



TQFN-2.6×1.8-16L

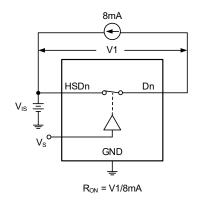
PIN DESCRIPTION

PIN	NAME	FUNCTION
1,2	HSD2-, HSD2+	
15, 16	HSD1-, HSD1+	Data Ports.
11, 12	D+, D-	
3	ŌĒ	Output Enable Control Pin.
4, 14	GND	Ground.
5	V _{SET}	Internal Used Pin. It is recommended to connect a $10k\Omega$ resistor between V_{SET} pin and V_{CC} pin.
6	V _{CC}	Positive Power Supply Pin.
7, 8, 13	N.C.	No Connect.
9	BP	Internal Voltage Reference Decoupling Pin. A 2.2µF ceramic capacitor must be used to provide enough decoupling. Connect the capacitor between BP pin and GND.
10	S	Select Input Pin.

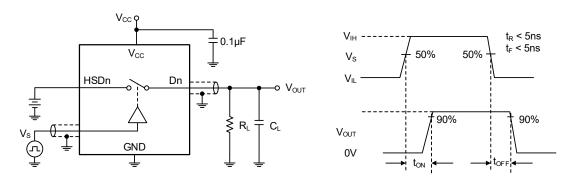
BLOCK DIAGRAM

FUNCTION TABLE

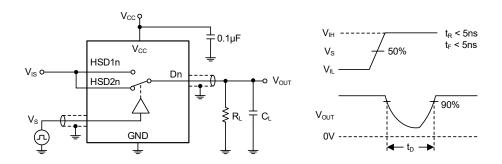
ŌE	s	HSD1+, HSD1-	HSD2+, HSD2-
0	0	ON	OFF
0	1	OFF	ON
1	X	OFF	OFF

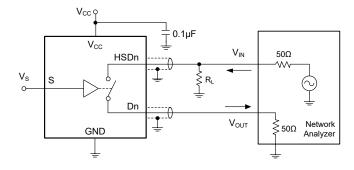

X = Don't care.

ELECTRICAL CHARACTERISTICS

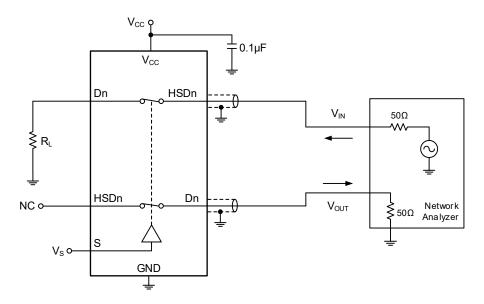

(V_{CC} = +5.0V, T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Analog Switch							
Analog I/O Voltage (D+, D-, HSD1+, HSD1-, HSD2+, HSD2-)	V_{IS}		0		3.3	V	
On-Resistance	R_{on}	V_{IS} = 0V to 0.4V, I_{D} = 8mA, Test Circuit 1		5	6.5	Ω	
On-Resistance Match between Channels	ΔR_{ON}	V _{IS} = 0V to 0.4V, I _D = 8mA, Test Circuit 1		0.35	0.6	Ω	
On-Resistance Flatness	$R_{\text{FLAT}(\text{ON})}$	V _{IS} = 0V to 1.0V, I _D = 8mA, Test Circuit 1		0.6	1	Ω	
Power Off Leakage Current (D+, D-)	I _{OFF}	$V_{CC} = 0V, V_D = 0V \text{ to } 3.6V, V_S, V_{\overline{OE}} = 0V \text{ or } 3.6 \text{ V}$			1	μA	
Source Off Leakage Current	I _{HSD2(OFF)} , I _{HSD1(OFF)}	V _{IS} = 3.3V/0.3V, V _D = 0.3V/3.3V			1	μΑ	
Channel On Leakage Current	I _{HSD2(ON)} , I _{HSD1(ON)}	$V_{IS} = 3.3V/0.3V$, $V_{D} = 3.3V/0.3V$ or floating			1	μA	
Digital Inputs		-					
Input High Voltage	$V_{IH(S,\ \overline{OE})}$		1.5		3.3	V	
Input riigh voitage	$V_{\text{IH (VSET)}}$		1.5		5.5	V	
Input Low Voltage	V_{IL}				0.35	V	
Input Leakage Current	$I_{IN(S,\ \overline{OE})}$				1	μА	
mpat zoakago Garront	I _{IN ((VSET)}				1.5		
Dynamic Characteristics							
Turn-On Time	t_{ON}	$V_{IS} = 0.8V, R_L = 50\Omega, C_L = 10pF,$		15		ns	
Turn-Off Time	t _{OFF}	Test Circuit 2		20		ns	
Break-Before-Make Time Delay	t_{D}	V_{IS} = 0.8V, R_L = 50 Ω , C_L = 10pF, Test Circuit 3		3.5		ns	
Propagation Delay	t _{PD}	$R_L = 50\Omega$, $C_L = 10pF$		0.5		ns	
Off Isolation	O _{ISO}	Signal = 0dBm, R _L = 50Ω, f = 250MHz, Test Circuit 4		-35		dB	
Channel-to-Channel Crosstalk	X _{TALK}	Signal = 0dBm, R_L = 50 Ω , f = 250MHz, Test Circuit 5		-30		dB	
-3dB Bandwidth	BW	Signal = 0dBm, R_L = 50 Ω , C_L = 5pF, Test Circuit 6		550		MHz	
Channel-to-Channel Skew	t _{SKEW}	$R_L = 50\Omega$, $C_L = 10pF$		1.5		ns	
Charge Injection Select Input to Common I/O	Q	V_G = GND, C_L = 1.0nF, R_G = 0 Ω , Q = C_L × V_{OUT} , Test Circuit 7		10		рС	
HSD+, HSD-, D+, D-	Con	f = 1MHz		10		pF	
ON Capacitance	OUN	f = 250MHz		15		Ρ'	
Power Requirements							
Power Supply Range	V_{CC}		1.8		5.5	V	
Power Supply Current	I _{cc}			20	30	μA	

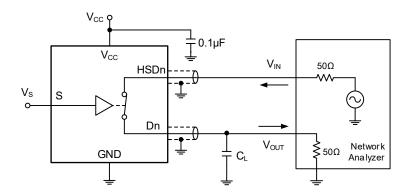

TEST CIRCUITS


Test Circuit 1. On-Resistance

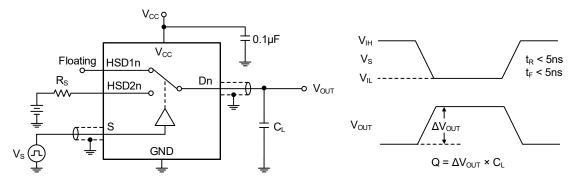
Test Circuit 2. Switching Times (ton, toff)



Test Circuit 3. Break-Before-Make Time (t_D)


Test Circuit 4. Off Isolation

TEST CIRCUITS (continued)



Channel-to-Channel Crosstalk = -20 log (V_{HSDn}/V_{OUT})

Test Circuit 5. Channel-to-Channel Crosstalk

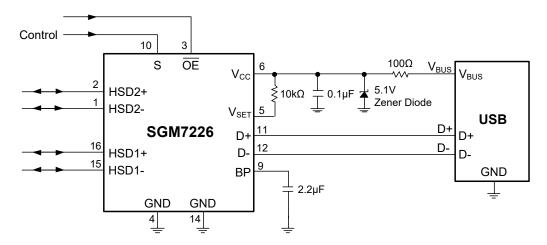
Test Circuit 6. -3dB Bandwidth

Test Circuit 7. Charge Injection (Q)

APPLICATION INFORMATION

Power-Off Protection

When D+ or D- is shorted to V_{BUS} , there is a special protection circuit inside the SGM7226, so that the device will not be damaged within 24 hours. In case of power-down or over-voltage event, the protection circuit can prevent the leakage signal on D+/D- pins to ensure the reliability of the system.


Power-On Protection

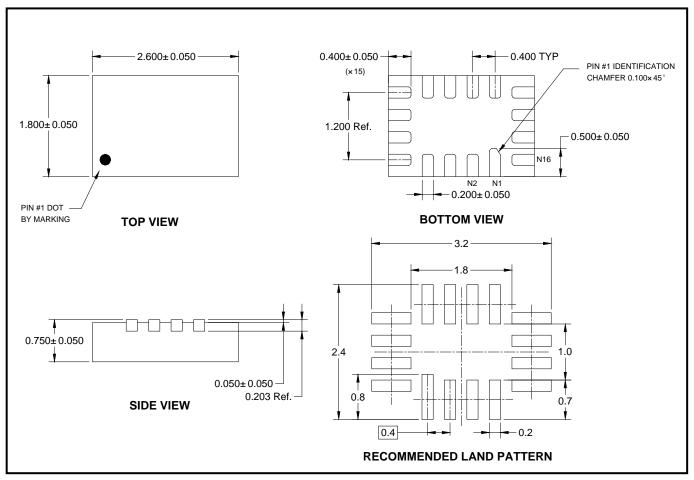
The USB 2.0 specification requires USB device to ensure that the device will not be damaged even if V_{BUS} short-circuit occurs during data transmission. Therefore,

under over-voltage conditions, the SGM7226 will limit the current flowing back to the V_{CC} track, and the current will not exceed the safe operating range.

Application Circuit

The application circuit is shown in Figure 1. If SGM7226 is powered from V_{BUS} , a 5.1V Zener diode is recommended to be used to suppress the voltage spike in V_{BUS} power line generated by USB interface hot-insertion.

Figure 1. Application Circuit

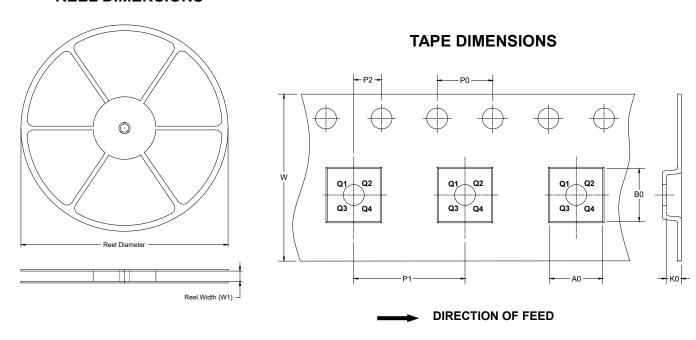

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

MAY 2016 - REV.A to REV.A.1	Page
Changed Package Outline Dimensions of TQFN-2.6×1.8-16L to TX00078.001	10
Changed Key Parameter List of Tape and Reel	11
Changes from Original (OCTOBER 2014) to REV.A	Page
Changed from product preview to production data	All

PACKAGE OUTLINE DIMENSIONS

TQFN-2.6×1.8-16L

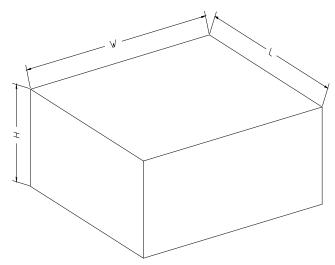


NOTES

- 1. All linear dimensions are in millimeters.
- 2. This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TQFN-2.6×1.8-16L	7"	9.0	2.01	2.81	0.93	4.0	4.0	2.0	8.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type			Height (mm)	Pizza/Carton	
7" (Option)	368	227	224	8	
7"	442	410	224	18	