

Automotive, 8-Bit Serial-In/Serial-Out or Parallel-Out Shift Register with 3-State Controlled Outputs

GENERAL DESCRIPTION

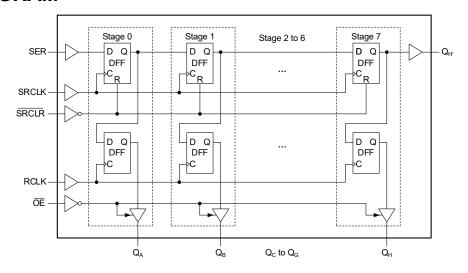
The 74AHC595Q is an 8-bit serial-in/serial-out or parallel-out shift register with 3-state controlled outputs designed for 2.0V to $5.5V\ V_{CC}$ operation.

The device integrates an 8-bit shift register and an 8-bit D-type storage register. The storage register features parallel 3-state outputs. The shift register provides a clear input (\overline{SRCLR}) with direct overriding function, a serial input (\overline{SRCLR}) and a serial output ($\overline{Q_{H'}}$) to implement cascading. When output enable input (\overline{OE}) is held low, the data in storage register will appear at the outputs. When \overline{OE} is held high, all outputs except $\overline{Q_{H'}}$ are in high-impedance state.

Both the shift register and storage register have separate clocks. The shift register clock (SRCLK) and storage register clock (RCLK) are positive-edge triggered. If the SRCLK and RCLK are connected together, the shift register always leads one clock pulse than the storage register all the time.

The device is AEC-Q100 qualified (Automotive Electronics Council (AEC) standard Q100 Grade 1) and it is suitable for automotive applications.

The 74AHC595Q is available in Green TSSOP-16 and TQFN-2.5×3.5-16L packages. It operates over a temperature range of -40°C to +125°C.

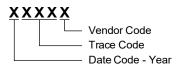

FEATURES

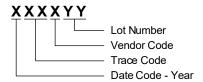
- AEC-Q100 Qualified for Automotive Applications
 Device Temperature Grade 1
 T_A = -40°C to +125°C
- Wide Supply Voltage Range: 2.0V to 5.5V
- 8-Bit Serial-In/Serial-Out or Parallel-Out Shift Register
- Direct Clear Input of Shift Register
- -40°C to +125°C Operating Temperature Range
- Available in Green TSSOP-16 and TQFN-2.5×3.5-16L Packages

APPLICATIONS

Automotive Applications Medical Equipment

LOGIC DIAGRAM


PACKAGE/ORDERING INFORMATION


MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE TOP MARKING	PACKING OPTION
7441105050	TSSOP-16	-40°C to +125°C	74AHC595QTS16G/TR	1DXTS16 XXXXX	Tape and Reel, 4000
74AHC595Q	TQFN-2.5×3.5-16L	-40°C to +125°C	74AHC595QTRG16G/TR	1DYTRG XXXXYY	Tape and Reel, 8000

MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code. XXXX = Date Code, Trace Code and Vendor Code. TQFN-2.5×3.5-16L

TSSOP-16

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

, 12002012 iii, baiiiioiii 10 ti ii 100
Supply Voltage Range, V _{CC} 0.5V to 7.0V
Input Voltage Range, V _I ⁽¹⁾
Output Voltage Range, $V_0^{(1)}$ -0.5V to MIN(7.0V, V_{CC} + 0.5V)
Input Clamp Current, I_{IK} ($V_I < 0V$)20mA
Output Clamp Current, I_{OK} (V_O < 0V or V_O > V_{CC})±20mA
Continuous Output Current, I_O (V_O = 0V to V_{CC}) $\pm 25 mA$
Continuous Current through V_{CC} or GND±75mA
Junction Temperature (2)+150°C
Storage Temperature Range65°C to +150°C
Lead Temperature (Soldering, 10s)+260°C
ESD Susceptibility (3) (4)
HBM±5000V
CDM±1000V

NOTES:

- 1. The input and output voltage ratings may be exceeded if the input and output clamp current ratings are observed.
- 2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability.
- 3. For human body model (HBM), all pins comply with AEC-Q100-002 specification.
- 4. For charged device model (CDM), all pins comply with AEC-Q100-011 specification.
- 5. Unused input pins must be held at V_{CC} or GND to guarantee the device in normal operation.

RECOMMENDED OPERATING CONDITIONS

Supply Voltage Range, V _{CC}	2.0V to 5.5V
Input Voltage Range, V _I ⁽⁵⁾	0V to 5.5V
Output Voltage Range, Vo	0V to V _{CC}
Input Transition Rise or Fall Rate, Δt/ΔV	
V _{CC} = 3.3V ± 0.3V	100ns/V (MAX)
V _{CC} = 5.0V ± 0.5V	20ns/V (MAX)
Operating Temperature Range	40°C to +125°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

FUNCTION TABLE

(CONTROL INPUTS			INPUT	OUTPUTS		FUNCTION
SRCLK	RCLK	ŌĒ	SRCLR	SER	Q _H	Q _A ~ Q _H	FUNCTION
X	X	L	L	X	L	NC	When SRCLR is low, it only affects the shift register.
X	↑	L	L	X	L	L	Load the empty shift register into the storage register.
Х	Х	Н	L	Х	L	Z	Shift register is reset and all parallel outputs are in high -impedance state.
↑	X	L	Н	Н	$Q_{G'}$	NC	When shift register stage 0 goes high, data of all shift register stages shifted through, e.g. the serial output $(Q_{H'})$ presents the previous state of stage 6 (internal $Q_{G'}$).
X	↑	L	Н	X	NC	$Q_{x'}$	Data of shift register (internal $Q_{x'}$) is transferred to the storage register and parallel output stages.
<u></u>	↑	L	Н	X	$Q_{G^{'}}$	$Q_{x'}$	Data of shift register shifted through, previous data of the shift register is transferred to the storage register and parallel output stages.

H = High Voltage Level

L = Low Voltage Level

↑ = Low-to-High Clock Transition

Z = High-Impedance State

NC = No Change

X = Don't Care

TIMING DIAGRAM

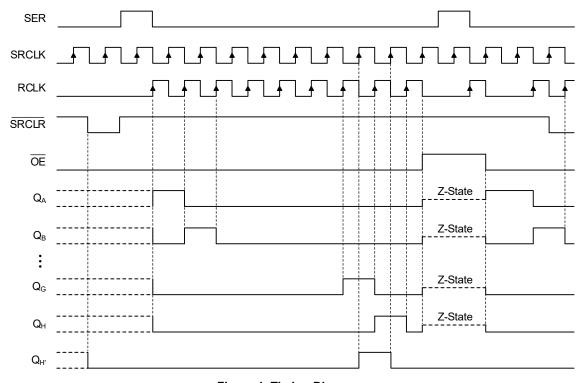
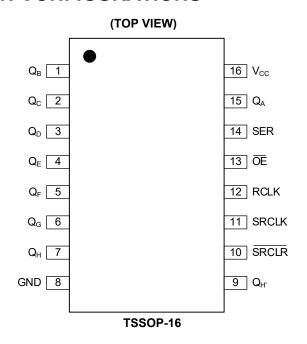
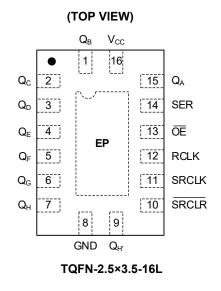




Figure 1. Timing Diagram

PIN CONFIGURATIONS

PIN DESCRIPTION

PIN	NAME	FUNCTION			
15, 1, 2, 3, 4, 5, 6, 7	$Q_A,Q_B,Q_C,Q_D,Q_E,Q_F,Q_G,Q_H$	Parallel Data Outputs.			
8	GND	Ground.			
9	Q _H '	Serial Data Output.			
10	SRCLR	Shift Register Clear Input (Active-Low).			
11	SRCLK	Shift Register Clock Input (Rising Edge Triggered).			
12	RCLK	Storage Register Clock Input (Rising Edge Triggered).			
13	ŌĒ	Output Enable Input (Active-Low).			
14	SER	Serial Data Input.			
16	V _{CC}	Power Supply.			
Exposed Pad	EP	Connect it to GND internally. This pad is not an electrical connection point. TQFN-2.5×3.5-16L package only.			

Automotive, 8-Bit Serial-In/Serial-Out or Parallel-Out Shift Register with 3-State Controlled Outputs

ELECTRICAL CHARACTERISTICS

(Full = -40°C to +125°C, all typical values are measured at T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS	
		V _{CC} = 2.0V	Full	1.5				
High-Level Input Voltage	V_{IH}	V _{CC} = 3.0V	Full	2.1			V	
Low-Level Input Voltage		V _{CC} = 5.5V	Full	3.85				
		V _{CC} = 2.0V	Full			0.5		
Low-Level Input Voltage	V_{IL}	V _{CC} = 3.0V	Full			0.9	V	
		V _{CC} = 5.5V	Full			1.65		
		V _{CC} = 2.0V, I _{OH} = -50μA	Full	1.9	1.995			
		V _{CC} = 3.0V, I _{OH} = -50μA	Full	2.9	2.995		V	
High-Level Output Voltage	V _{ОН}	V _{CC} = 4.5V, I _{OH} = -50μA	Full	4.4	4.495			
		V _{CC} = 3.0V, I _{OH} = -4mA	Full	2.5	2.85			
		/ _{CC} = 4.5V, I _{OH} = -8mA Full 3.8		4.3				
		V _{CC} = 2.0V, I _{OL} = 50μA	Full		0.005	0.1		
		$V_{CC} = 3.0V$, $I_{OL} = 50\mu A$ Full			0.005	0.1		
Low-Level Output Voltage	V_{OL}	V _{CC} = 4.5V, I _{OL} = 50μA	Full		0.005	0.1	V	
		V _{CC} = 3.0V, I _{OL} = 4mA	Full		0.15	0.15 0.5		
		V _{CC} = 4.5V, I _{OL} = 8mA	Full		0.20	0.5		
Input Leakage Current	I _I	V _{CC} = 0V to 5.5V, V _I = 5.5V or GND	Full		±0.01	±1	μA	
Off-State Output Current	l _{oz}	$Q_A \sim Q_H$, $V_{CC} = 5.5V$, $V_I = V_{CC}$ or GND, $V_O = V_{CC}$ or GND, $\overline{OE} = V_{IH}$ or V_{IL}	Full		±0.01	±5	μА	
Supply Current	Icc	V_{CC} = 5.5V, V_I = V_{CC} or GND, I_O = 0A	Full		0.02	5	μΑ	
Input Capacitance	Cı	V_{CC} = 5.0V, V_I = V_{CC} or GND	+25°C		4		pF	
Output Capacitance	Co	V_{CC} = 5.0V, V_{O} = V_{CC} or GND	+25°C		5.5		pF	

Automotive, 8-Bit Serial-In/Serial-Out or Parallel-Out Shift Register with 3-State Controlled Outputs

DYNAMIC CHARACTERISTICS

(See Figure 2 for test circuit. Full = -40°C to +125°C, C_L = 50pF, all typical values are measured at T_A = +25°C, V_{CC} = 3.3V and 5.0V respectively, unless otherwise noted.)

PARAMETER	SYMBOL	CONI	DITIONS	TEMP	MIN (1)	TYP	MAX (1)	UNITS	
		RCLK to Q _A ~ Q _H ,	$V_{CC} = 3.3V \pm 0.3V$	Full	1	8.5	14.2		
Low to High Propagation Daloy		see Figure 4	$V_{CC} = 5.0V \pm 0.5V$	Full	0.5	6.5	10.2		
Low-to-High Propagation Delay	t _{PLH}	SRCLK to Q _H ,	$V_{CC} = 3.3V \pm 0.3V$	Full	1	9.0	14.4	ns	
		see Figure 3	$V_{CC} = 5.0V \pm 0.5V$	Full	1	6.5	10.3		
		RCLK to Q _A ~ Q _H ,	$V_{CC} = 3.3V \pm 0.3V$	Full	1	8.5	13.6		
		see Figure 4	$V_{CC} = 5.0V \pm 0.5V$	Full	1	6.5	10.2		
High to Law Propagation Delay		SRCLK to Q _H ,	$V_{CC} = 3.3V \pm 0.3V$	Full	1	8.5	13.9		
High-to-Low Propagation Delay	t _{PHL}	see Figure 3	$V_{CC} = 5.0V \pm 0.5V$	Full	0.5	8.5	13.7	- ns -	
		SRCLR to Q _H , see Figure 6	$V_{CC} = 3.3V \pm 0.3V$	Full	1	7.5	14.9		
			$V_{CC} = 5.0V \pm 0.5V$	Full	0.5	6.5	11.7		
Off-to-High Propagation Delay		ŌĒ to Q _A ∼ Q _H ,	$V_{CC} = 3.3V \pm 0.3V$	Full	1	7.5	13.0	- ns	
On-to-nigh Propagation Delay	t _{PZH}		$V_{CC} = 5.0V \pm 0.5V$	Full	0.5	6.0	9.6		
Off-to-Low Propagation Delay		see Figure 7	$V_{CC} = 3.3V \pm 0.3V$	Full	1	7.5	12.0		
On-to-Low Propagation Delay	t _{PZL}		$V_{CC} = 5.0V \pm 0.5V$	Full	0.5	6.0	9.4		
High-to-Off Propagation Delay			$V_{CC} = 3.3V \pm 0.3V$	Full	1	11.0	15.8		
night-to-Off Propagation Delay	t _{PHZ}	\overline{OE} to $Q_A \sim Q_H$,	$V_{CC} = 5.0V \pm 0.5V$	Full	1	8.0	11.4	- ns	
	4	see Figure 7	$V_{CC} = 3.3V \pm 0.3V$	Full	1	11.0	16.8		
Low-to-Off Propagation Delay	t _{PLZ}		$V_{CC} = 5.0V \pm 0.5V$	Full	1	6.5	12.2		
Maximum Fraguenay	f	See Figure 3 and	$V_{CC} = 3.3V \pm 0.3V$	Full	90	130			
Maximum Frequency	f _{MAX}	Figure 4	$V_{CC} = 5.0V \pm 0.5V$	Full	100	155		MHz	

NOTE:

1. Specified by design and characterization, not production tested.

Automotive, 8-Bit Serial-In/Serial-Out or Parallel-Out Shift Register with 3-State Controlled Outputs

DYNAMIC CHARACTERISTICS (continued)

(See Figure 2 for test circuit. Full = -40°C to +125°C, $C_L = 50$ pF, all typical values are measured at $T_A = +25$ °C, $V_{CC} = 3.3$ V and 5.0V respectively, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	3	TEMP	MIN (1)	TYP	MAX (1)	UNITS
		CDCLI/ high or law one Figure 2	$V_{CC} = 3.3V \pm 0.3V$	Full	6			
		SRCLK high or low, see Figure 3	$V_{CC} = 5.0V \pm 0.5V$	Full	6			
Pulse Width		DCLK high or low one Figure 4	$V_{CC} = 3.3V \pm 0.3V$	Full	6			
Puise Width	t _W	RCLK high or low, see Figure 4	$V_{CC} = 5.0V \pm 0.5V$	Full	6			ns
		CDCLD law are Figure C	$V_{CC} = 3.3V \pm 0.3V$	Full	9			
		SRCLR low, see Figure 6	$V_{CC} = 5.0V \pm 0.5V$	Full	9			1
	t _{su}	SER before SRCLK ↑, see Figure 5	$V_{CC} = 3.3V \pm 0.3V$	Full	4			
			$V_{CC} = 5.0V \pm 0.5V$	Full	3			ns
		SRCLK ↑ before RCLK ↑ ⁽²⁾ , see Figure 4	$V_{CC} = 3.3V \pm 0.3V$	Full	7			
Catus Time			$V_{CC} = 5.0V \pm 0.5V$	Full	4			
Setup Time		SRCLR low before RCLK ↑, see Figure 6	$V_{CC} = 3.3V \pm 0.3V$	Full	7			
			$V_{CC} = 5.0V \pm 0.5V$	Full	5			
		SRCLR high (inactive) before	$V_{CC} = 3.3V \pm 0.3V$	Full	2			
		SRCLK ↑, see Figure 6	$V_{CC} = 5.0V \pm 0.5V$	Full	2			
Llaid Time		CED after CDCLIVA and Figure 5	$V_{CC} = 3.3V \pm 0.3V$	Full	2.5			ns
Hold Time	t _H	SER after SRCLK ↑, see Figure 5	$V_{CC} = 5.0V \pm 0.5V$	Full	2			
Power Dissipation Capacitance (3) (4)	C _{PD}	No load, V _{CC} = 5.0V ± 0.5V, f = 10N	ЛНz	+25°C		85		pF

NOTES:

- 1. Specified by design and characterization, not production tested.
- 2. The setup time enables the storage register to get stable data from the shift register. In this case where clocks can be tied together, the shift register is a clock pulse in front of the storage register.
- 3. C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

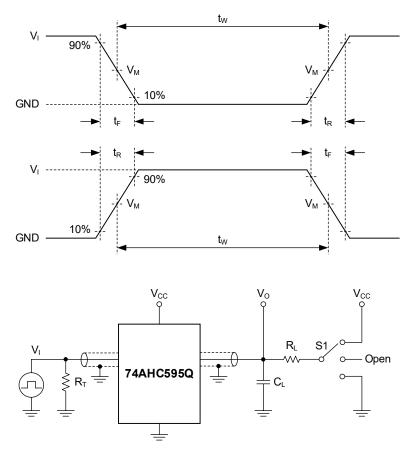
$$P_{D} = C_{PD} \times {V_{CC}}^{2} \times f_{i} \times N + \Sigma (C_{L} \times {V_{CC}}^{2} \times f_{o})$$

where:

 f_i = Input frequency in MHz.

f_o = Output frequency in MHz.

C_L = Output load capacitance in pF.


V_{CC} = Supply voltage in Volts.

N = Number of inputs switching.

 $\Sigma(C_L \times V_{CC}^2 \times f_0) = \text{Sum of outputs.}$

4. All 9 outputs switching.

TEST CIRCUIT

Test conditions are given in Table 1.

Definitions test circuit:

R_L: Load resistance.

C_L: Load capacitance (includes jig and probe).

 R_T : Termination resistance (equals to output impedance Z_0 of the pulse generator).

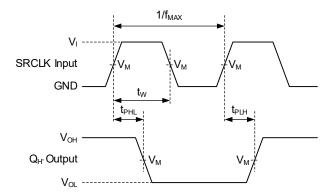
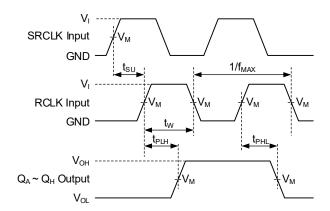

S1: Test selection switch.

Figure 2. Test Circuit for Measuring Switching Times

Table 1. Test Conditions

Table 11 1000 Contained								
SUPPLY VOLTAGE	INPUT		LO	AD	S1 POSITION			
V _{cc}	Vı	t _R , t _F	CL	R _L	t _{PHL} , t _{PLH}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}	
2.0V to 5.5V	V _{CC}	≤ 3.0ns	50pF	1kΩ	Open	GND	V _{CC}	

WAVEFORMS

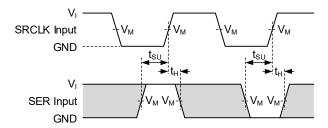


Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 3. Shift Register Clock Input to Output Propagation Delay Times, Pulse Width and Maximum Frequency

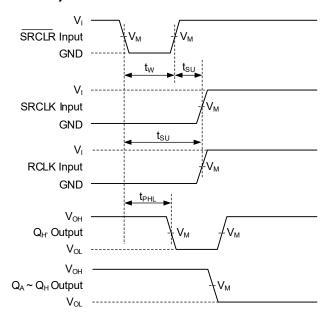


Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 4. Storage Register Clock Input to Output Propagation Delay Times, Shift Register Clock to Storage Register Clock Setup Time, Pulse Width and Maximum Frequency

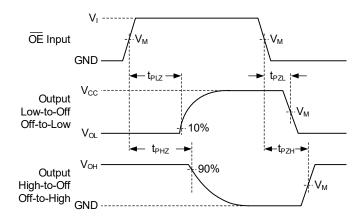

Test conditions are given in Table 1.

Measurement points are given in Table 2.

The shaded areas refer to when the input is allowed to change for predictable output performance.

Figure 5. Data Setup and Hold Times

WAVEFORMS (continued)



Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 6. Clear Input to Output Propagation Delay Times, Pulse Width and Setup Time

Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 7. Enable and Disable Times

Table 2. Measurement Points

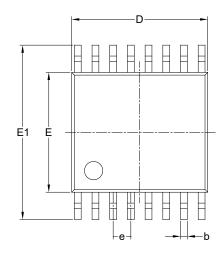
SUPPLY VOLTAGE	INF	OUTPUT	
V _{CC}	V _I V _M (1)		V _M
2.0V to 5.5V	Vcc	0.5 × V _{CC}	0.5 × V _{CC}

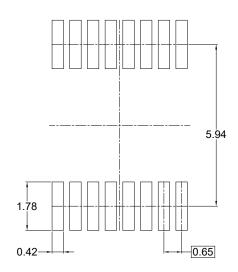
NOTE:

1. The measurement points should be V_{IH} or V_{IL} when the input rising or falling time exceeds 3.0ns.

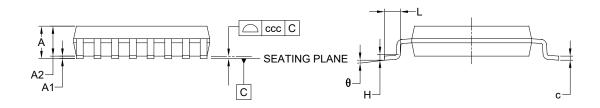
74AHC595Q

Automotive, 8-Bit Serial-In/Serial-Out or Parallel-Out Shift Register with 3-State Controlled Outputs

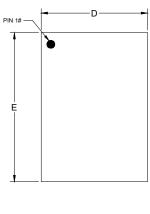

REVISION HISTORY

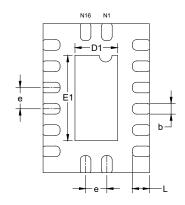

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

JUNE 2025 – REV.A to REV.A.1	Page
Updated Electrical Characteristics section	5
Added TQFN-2.5×3.5-16L package	All
Changes from Original (FEBRUARY 2025) to REV.A	Page
Changed from product preview to production data	All

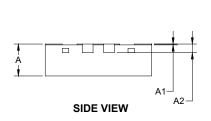


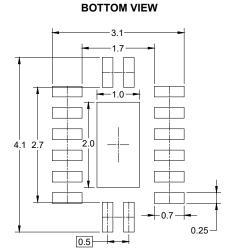
PACKAGE OUTLINE DIMENSIONS TSSOP-16


RECOMMENDED LAND PATTERN (Unit: mm)



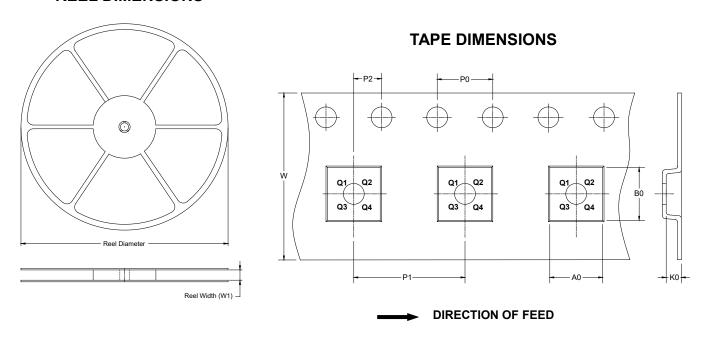
Cymphol	Dimensions In Millimeters						
Symbol	MIN	NOM	MAX				
Α	-	-	1.200				
A1	0.050	-	0.150				
A2	0.800	-	1.050				
b	0.190	-	0.300				
С	0.090	-	0.200				
D	4.860	-	5.100				
Е	4.300	-	4.500				
E1	6.200	-	6.600				
е		0.650 BSC					
L	0.450	-	0.750				
Н	0.250 TYP						
θ	0° - 8°						
ccc	0.100						


- This drawing is subject to change without notice.
 The dimensions do not include mold flashes, protrusions or gate burrs.
- 3. Reference JEDEC MO-153.


PACKAGE OUTLINE DIMENSIONS TQFN-2.5×3.5-16L

TOP VIEW

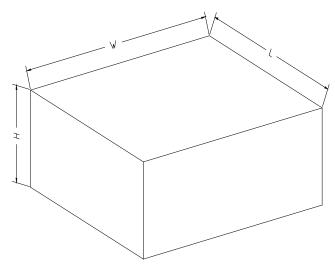
RECOMMENDED LAND PATTERN (Unit: mm)


Cymph ol	Dimensions In Millimeters					
Symbol	MIN	NOM	MAX			
Α	0.70	0.75	0.80			
A1	0.00	0.02	0.05			
A2	0.203 REF					
b	0.20	0.25	0.30			
D	2.40	2.50	2.60			
D1	0.85	1.00	1.15			
E	3.40	3.50	3.60			
E1	1.85	2.00	2.15			
е	0.45	0.50	0.55			
L	0.30	0.40	0.50			

NOTE: This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TSSOP-16	13"	12.4	6.80	5.40	1.50	4.0	8.0	2.0	12.0	Q1
TQFN-2.5×3.5-16L	13"	12.4	2.80	3.80	1.13	4.0	4.0	2.0	12.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Reel Type Length (mm)		Height (mm)	Pizza/Carton		
13″	386	280	370	5	DD0002	