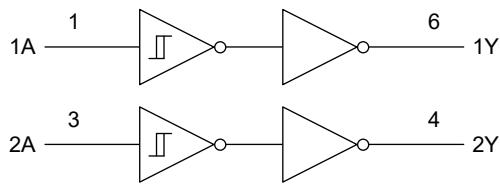


GENERAL DESCRIPTION

The 74LVC2G17Q is a dual Schmitt-Trigger buffer which can accept supply voltage range from 1.65V to 5.5V.


The device features two independent buffers, but it may have different input threshold levels for positive-going (V_{T+}) and negative-going (V_{T-}) signals due to Schmitt-Trigger action. The device implements the Boolean function $Y = A$.

This device is highly suitable for partial power-down applications by using power-off circuit. When the device is powered down, the outputs are disabled, and the current backflow can be prevented from passing through the device.

The device is AEC-Q100 qualified (Automotive Electronics Council (AEC) standard Q100 Grade 1) and it is suitable for automotive applications.

The 74LVC2G17Q is available in a Green SC70-6 package. It operates over a temperature range of -40°C to +125°C.

LOGIC DIAGRAM

FEATURES

- AEC-Q100 Qualified for Automotive Applications
Device Temperature Grade 1
 $T_A = -40^\circ\text{C}$ to $+125^\circ\text{C}$
- Wide Operating Voltage Range: 1.65V to 5.5V
- Inputs Accept Voltages up to 5.5V
- $+24\text{mA}/-24\text{mA}$ Output Current at $V_{CC} = 3.0\text{V}$
- Low Power Dissipation: $I_{CC} = 10\mu\text{A}$ (MAX)
- Propagation Delay: $t_{PD} = 7\text{ns}$ (TYP) at $V_{CC} = 3.3\text{V}$
- Support Partial Power-Down Mode
- -40°C to $+125^\circ\text{C}$ Operating Temperature Range
- Available in a Green SC70-6 Package

APPLICATIONS

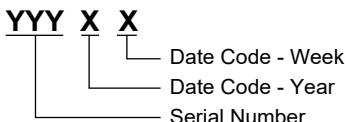
Automotive Application
Audio Equipment
LCD TV
Panel
Computing: Server, PC, Pad, Notebook, SSD
Smartphone
Telecom Equipment

FUNCTION TABLE

INPUT	OUTPUT
nA	nY
H	H
L	L

$Y = A$

H = High Voltage Level


L = Low Voltage Level

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
74LVC2G17Q	SC70-6	-40°C to +125°C	74LVC2G17QC6G/TR	1L9XX	Tape and Reel, 3000

MARKING INFORMATION

NOTE: XX = Date Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage Range, V _{CC}	-0.5V to 6.5V
Input Voltage Range, V _I ⁽¹⁾	-0.5V to 6.5V
Output Voltage Range, V _O ⁽¹⁾	
Active Mode	-0.5V to MIN(6.5V, V _{CC} + 0.5V)
Power-Down Mode (V _{CC} = 0V)	-0.5V to 6.5V
Input Clamp Current, I _{IK} (V _I < 0V)	-50mA
Output Clamp Current, I _{OK} (V _O < 0V)	-50mA
Continuous Output Current, I _O	±50mA
Continuous Current through V _{CC} or GND	±100mA
Junction Temperature ⁽²⁾	+150°C
Storage Temperature Range	-65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility ⁽³⁾⁽⁴⁾	
HBM	±8000V
CDM	±1000V

NOTES:

1. The input and output voltage ratings may be exceeded if the input and output clamp current ratings are observed.
2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability.
3. For human body model (HBM), all pins comply with AEC-Q100-002 specification.
4. For charged device model (CDM), all pins comply with AEC-Q100-011 specification.

RECOMMENDED OPERATING CONDITIONS

Supply Voltage Range, V _{CC}	1.65V to 5.5V
Input Voltage Range, V _I	0V to 5.5V
Output Voltage Range, V _O	
Active Mode	0V to V _{CC}
Power-Down Mode (V _{CC} = 0V)	0V to 5.5V
Operating Temperature Range	-40°C to +125°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATION

PIN DESCRIPTION

PIN	NAME	FUNCTION
1, 3	1A, 2A	Data Inputs.
2	GND	Ground.
4, 6	2Y, 1Y	Data Outputs.
5	V _{cc}	Supply Voltage.

ELECTRICAL CHARACTERISTICS

(Full = -40°C to +125°C, all typical values are measured at $T_A = +25^\circ\text{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS
Positive-Going Input Threshold Voltage	V_{T+}	$V_{CC} = 1.65\text{V}$	Full	0.70	1.03	1.40	V
		$V_{CC} = 2.3\text{V}$	Full	1.00	1.46	1.70	
		$V_{CC} = 3.0\text{V}$	Full	1.30	1.88	2.10	
		$V_{CC} = 4.5\text{V}$	Full	1.90	2.65	3.10	
		$V_{CC} = 5.5\text{V}$	Full	2.20	3.12	3.70	
Negative-Going Input Threshold Voltage	V_{T-}	$V_{CC} = 1.65\text{V}$	Full	0.30	0.55	0.70	V
		$V_{CC} = 2.3\text{V}$	Full	0.40	0.81	1.00	
		$V_{CC} = 3.0\text{V}$	Full	0.80	1.08	1.30	
		$V_{CC} = 4.5\text{V}$	Full	1.10	1.61	2.00	
		$V_{CC} = 5.5\text{V}$	Full	1.40	1.96	2.50	
Hysteresis ($V_{T+} - V_{T-}$)	ΔV_T	$V_{CC} = 1.65\text{V}$	Full	0.30	0.49	0.80	V
		$V_{CC} = 2.3\text{V}$	Full	0.35	0.65	0.90	
		$V_{CC} = 3.0\text{V}$	Full	0.40	0.80	1.10	
		$V_{CC} = 4.5\text{V}$	Full	0.60	1.04	1.30	
		$V_{CC} = 5.5\text{V}$	Full	0.70	1.17	1.40	
High-Level Output Voltage	V_{OH}	$V_{CC} = 1.65\text{V to } 5.5\text{V, } I_{OH} = -100\mu\text{A}$	Full	$V_{CC} - 0.1$	$V_{CC} - 0.01$		V
		$V_{CC} = 1.65\text{V, } I_{OH} = -4\text{mA}$	Full	1.20	1.56		
		$V_{CC} = 2.3\text{V, } I_{OH} = -8\text{mA}$	Full	1.90	2.19		
		$V_{CC} = 2.7\text{V, } I_{OH} = -12\text{mA}$	Full	2.20	2.56		
		$V_{CC} = 3.0\text{V, } I_{OH} = -16\text{mA}$	Full	2.40	2.84		
		$V_{CC} = 3.0\text{V, } I_{OH} = -24\text{mA}$	Full	2.30	2.75		
		$V_{CC} = 4.5\text{V, } I_{OH} = -32\text{mA}$	Full	3.80	4.27		
Low-Level Output Voltage	V_{OL}	$V_{CC} = 1.65\text{V to } 5.5\text{V, } I_{OL} = 100\mu\text{A}$	Full		0.01	0.10	V
		$V_{CC} = 1.65\text{V, } I_{OL} = 4\text{mA}$	Full		0.08	0.45	
		$V_{CC} = 2.3\text{V, } I_{OL} = 8\text{mA}$	Full		0.11	0.30	
		$V_{CC} = 2.7\text{V, } I_{OL} = 12\text{mA}$	Full		0.15	0.35	
		$V_{CC} = 3.0\text{V, } I_{OL} = 16\text{mA}$	Full		0.19	0.40	
		$V_{CC} = 3.0\text{V, } I_{OL} = 24\text{mA}$	Full		0.29	0.55	
		$V_{CC} = 4.5\text{V, } I_{OL} = 32\text{mA}$	Full		0.31	0.55	
Input Leakage Current	I_I	$V_{CC} = 0\text{V to } 5.5\text{V, } V_I = 5.5\text{V or GND}$	Full		± 0.01	± 5	μA
Power-Off Leakage Current	I_{OFF}	$V_{CC} = 0\text{V, } V_I = 5.5\text{V or } V_O = 5.5\text{V}$	Full		± 0.01	± 10	μA
Supply Current	I_{CC}	$V_{CC} = 1.65\text{V to } 5.5\text{V, } V_I = 5.5\text{V or GND, } I_O = 0\text{A}$	Full		0.01	10	μA
Additional Supply Current	ΔI_{CC}	One input at $V_{CC} - 0.6\text{V}$, other input at V_{CC} or GND, $V_{CC} = 3.0\text{V to } 5.5\text{V}$	Full		0.01	500	μA
Input Capacitance	C_I	$V_{CC} = 3.3\text{V, } V_I = V_{CC} \text{ or GND}$	+25°C		4		pF

DYNAMIC CHARACTERISTICS

(See Figure 1 for test circuit. Full = -40°C to +125°C, all typical values are measured at $T_A = +25^\circ\text{C}$ and $V_{CC} = 1.8\text{V}, 2.5\text{V}, 3.3\text{V}$ and 5.0V respectively, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN ⁽¹⁾	TYP	MAX ⁽¹⁾	UNITS
Propagation Delay ⁽²⁾	t_{PD}	nA to nY, see Figure 2	$V_{CC} = 1.8\text{V} \pm 0.15\text{V}$	Full	1.0	10.5	19.7
			$V_{CC} = 2.5\text{V} \pm 0.2\text{V}$	Full	0.5	8.0	11.3
			$V_{CC} = 3.3\text{V} \pm 0.3\text{V}$	Full	0.5	7.0	9.4
			$V_{CC} = 5.0\text{V} \pm 0.5\text{V}$	Full	0.5	6.0	8.4
Power Dissipation Capacitance ⁽³⁾	C_{PD}	$f = 10\text{MHz}$	$V_{CC} = 1.8\text{V}$	+25°C		28	ns
			$V_{CC} = 2.5\text{V}$	+25°C		28	
			$V_{CC} = 3.3\text{V}$	+25°C		29	
			$V_{CC} = 5.0\text{V}$	+25°C		30	

NOTES:

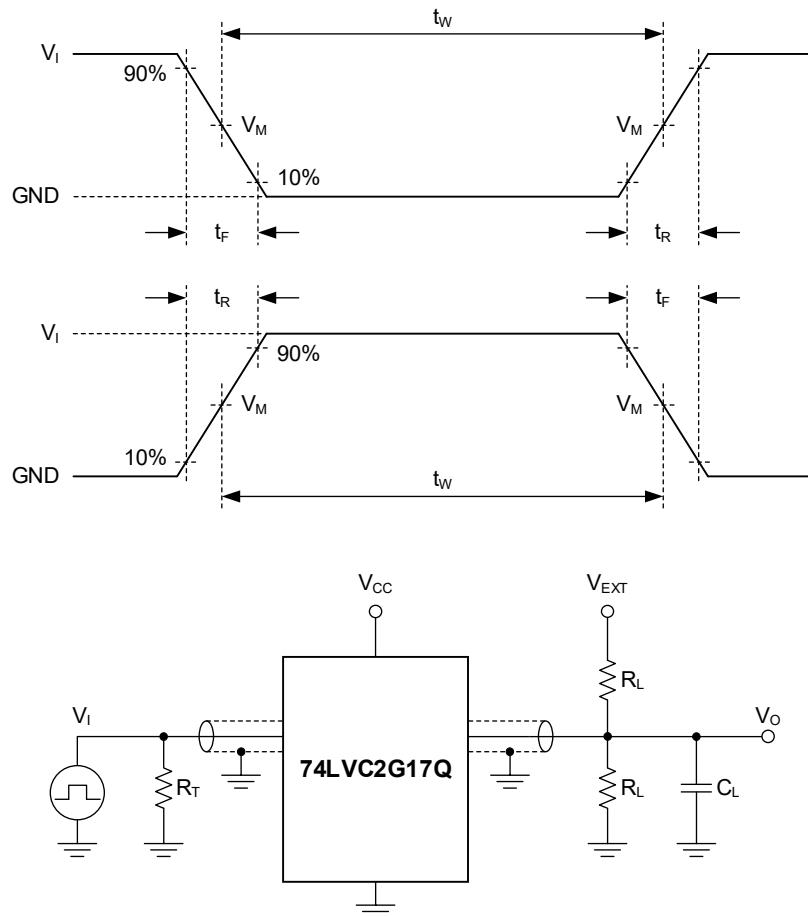
1. Specified by design and characterization, not production tested.
2. t_{PD} is the same as t_{PLH} and t_{PHL} .
3. C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

$$P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \sum(C_L \times V_{CC}^2 \times f_o)$$

where:

f_i = Input frequency in MHz.

f_o = Output frequency in MHz.


C_L = Output load capacitance in pF.

V_{CC} = Supply voltage in Volts.

N = Number of inputs switching.

$\sum(C_L \times V_{CC}^2 \times f_o)$ = Sum of outputs.

TEST CIRCUIT

Test conditions are given in Table 1.

Definitions for test circuit:

R_L : Load resistance.

C_L : Load capacitance (includes jig and probe).

R_T : Termination resistance (equals to output impedance Z_O of the pulse generator).

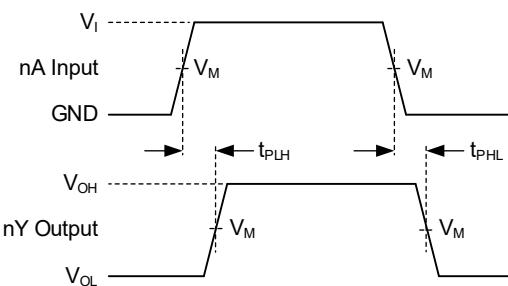

V_{EXT} : External voltage is used to measure switching time.

Figure 1. Test Circuit for Measuring Switching Times

Table 1. Test Conditions

SUPPLY VOLTAGE	INPUT		LOAD		V_{EXT}
V_{CC}	V_I	t_R, t_F	C_L	R_L	t_{PLH}, t_{PHL}
$1.8V \pm 0.15V$	V_{CC}	$\leq 2.0ns$	30pF	$1k\Omega$	Open
$2.5V \pm 0.2V$	V_{CC}	$\leq 2.0ns$	30pF	500Ω	Open
$3.3V \pm 0.3V$	3V	$\leq 2.5ns$	50pF	500Ω	Open
$5.0V \pm 0.5V$	V_{CC}	$\leq 2.5ns$	50pF	500Ω	Open

WAVEFORMS

Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 2. Input (nA) to Output (nY) Propagation Delay Times

Table 2. Measurement Points

SUPPLY VOLTAGE	INPUT		OUTPUT
V_{CC}	V_I	$V_M^{(1)}$	V_M
$1.8V \pm 0.15V$	V_{CC}	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$
$2.5V \pm 0.2V$	V_{CC}	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$
$3.3V \pm 0.3V$	$3V$	$1.5V$	$1.5V$
$5.0V \pm 0.5V$	V_{CC}	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$

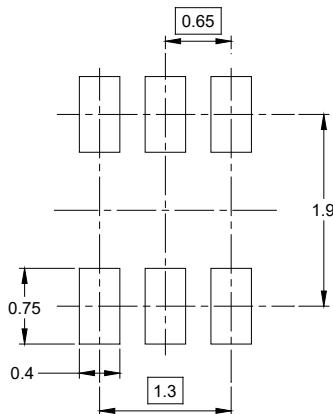
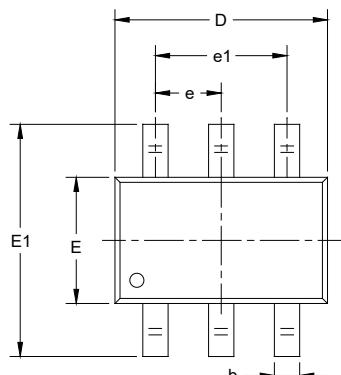
NOTE:

1. The measurement points should be V_{IH} or V_{IL} when the input rising or falling time exceeds 2.5ns.

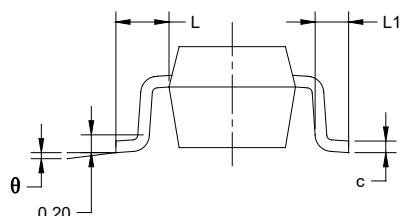
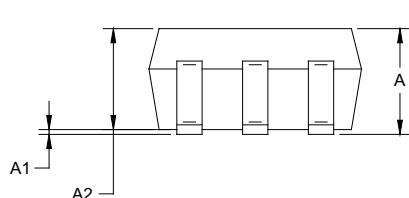
REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Original to REV.A (DECEMBER 2025)



Page

Changed from product preview to production data.....All

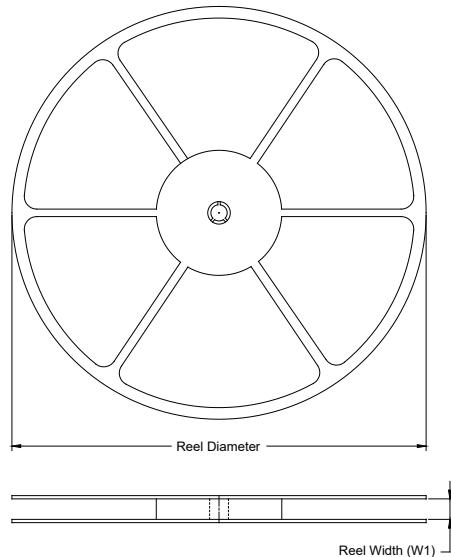


PACKAGE INFORMATION

PACKAGE OUTLINE DIMENSIONS

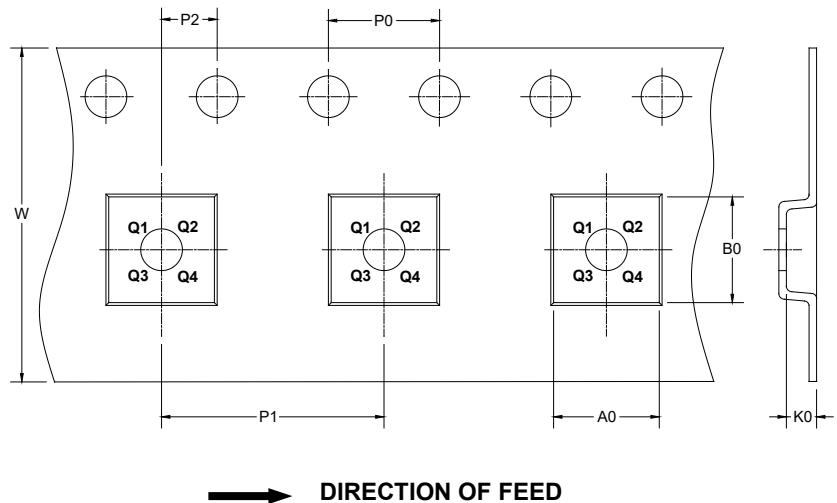
SC70-6

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	MIN	MAX	MIN	MAX
A	0.800	1.100	0.031	0.043
A1	0.000	0.100	0.000	0.004
A2	0.800	1.000	0.031	0.039
b	0.150	0.350	0.006	0.014
c	0.080	0.220	0.003	0.009
D	2.000	2.200	0.079	0.087
E	1.150	1.350	0.045	0.053
E1	2.150	2.450	0.085	0.096
e	0.65 TYP		0.026 TYP	
e1	1.300 BSC		0.051 BSC	
L	0.525 REF		0.021 REF	
L1	0.260	0.460	0.010	0.018
θ	0°	8°	0°	8°


NOTES:

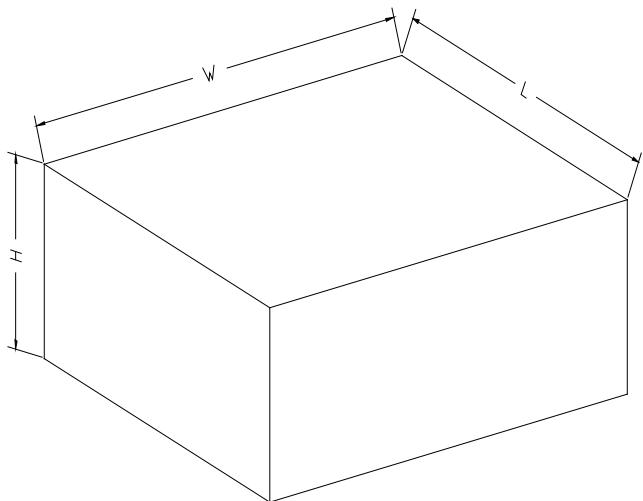
1. Body dimensions do not include mode flash or protrusion.
2. This drawing is subject to change without notice.


PACKAGE INFORMATION

TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSIONS


NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SC70-6	7"	9.5	2.40	2.50	1.20	4.0	4.0	2.0	8.0	Q3

PACKAGE INFORMATION

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
7" (Option)	368	227	224	8
7"	442	410	224	18

DD0002